



## A Semiformal Forensics Approach to UCaaS Architectures

16 October 2018



Juan C Bennett, Ph.D.









#### **Capabilities – Across the Full Life Cycle**







### **SSC PAC MISSION**





...research, development, engineering, and support of integrated C4ISR, cyber, and space systems across all warfighting domains



#### SSC PAC Support in the Pacific Region





**Only DoD Lab** Located in a Major Fleet Concentration Area



## **Unified Capabilities**











- H.323 and SIP protocols for signaling and call control in VoIP.
- Provide total access and supporting IP svc.
- H.323 is complex, requires a combination of components to perform.
- Current UC deployments are based on legacy technology
- End of life for circuit switched technologies
- Need high-level specification of the UC architecture that can be used to conduct forensic investigations in a tactical environment.
- Analyze the interoperability with other multimedia service networks and terminals.
- Users limited control over SaaS infrastructure





# **Class Diagram for UCaaS Pattern**









- Digital Forensics
  - Investigate attacks in networked systems and applications
  - Example Tools:
    - Instruction detection systems IDSs (e.g. Snort, AIDE)
    - Packet capture tools (e.g. Tcpdump)
    - Network data collectors (e.g. NFAT)
- Process
  - Identify, collect and analyze forensic evidence from the network
  - Reconstruct network attacking behavior using raw data
  - Isolate the specific incidents and identify attackers



# Network Forensic Challenges -Collection-



#### Forces

- Firewalls and IDS, cannot detect or prevent all attacks.
- Manual analysis not possible. Forensic methods with shorter response times needed.
- Systematic approach needed to detect vulnerabilities/resulting attacks.
- Need network models to detect complex attacks in tactical environments
- VoIP, requires automated collection of forensic data to provide data reduction/correlation.
- CSP control system and applications provided by the system
- Data replication, location transparency, and multi-tenancy are unique to cloud computing forensics.
- Complex systems difficult to monitor, protect and analyze due to many factors such as size, architecture complexity, distributed nature, heterogeneity, the large numbers of users, and diversity of services provided



# Network Forensic Challenges –Analysis-



#### Forces

- Analysis and reconstruction of attacks time-consuming and human-intensive tasks.
- Storing network data for forensic analysis may be complicated.
- Encrypted packets are difficult to analyze.
- Forensic analysis process must guarantee data preservation and integrity.
- Attacks in converged networks becoming more frequent/complex to counter.
- Lack of experience executing investigations or using similar forensic tools.
- Dynamic behavior, and availability of many heterogeneous devices
- Structured method required for reusing cloud forensic knowledge and documenting forensic investigations.
- Forensic tools incapable to accurately characterize current states, detect malicious attacks, and stop them or their fast propagation and/or minimize their impacts.





- Discover new ways to characterize network environments and information embedded in the network.
- Comprehensive pattern system based on a collection of semi-formal patterns.
- Analyze network forensic investigations in converged environments using forensic patterns.
- Pattern systems specify, analyze and implement network forensics investigations for different architectures.
- Secure and convenient method of collecting/analyzing digital attack evidence in converged environments.





- Extra dimension of protection to the system.
- Abstract view of forensic information to network investigators.
- Enable faster response and more structured investigations of network attacks.
- Discover source of security breaches
- CEC to collect attack packets on the basis of adaptively setting filtering rules for real-time collection.
- Sensors with examination capabilities to look at UC traffic (i.e. signaling and media)
- CEA analyzes collected forensic data packets, and presents a process of investigating attacks against the converged network.



## **Cloud Evidence Collector**



















- Implement network forensics as a secure and convenient method of collecting/analyzing digital evidence in UCaaS.
- Patterns can guide systems development, be used to evaluate existing designs, be a basis for simulation, and be a pedagogical tool.
- Approach provides a precise framework where to apply security.
- Creation of a comprehensive pattern system to be used in forensic investigation processes.
- Concentrated on pattern functionality/usefulness. First steps toward a methodology for modeling network forensics.
- Potential to be used as evidence. Forensic patterns value may be realized when semi-formal models are reused on similar investigations.



### **Moving Forward**



- Development of automated network forensic systems using modeling and simulation approaches.
- Collaborations with other disciplines to develop new tools enhance existing forensic frameworks.
- Analyze new and evolving network attacks. Expand attack pattern catalog.
- Design new tools for better evidence collection/analysis (e.g. network behavior analysis.
- ▼ Proactive vs. reactive network
- ▼ Live-forensics vs. post-mortem
- ▼ Innovate, Integrate, Interoperate







