
DBMS Support
for Big Live
Data
MALCOLM CROWE AND FRITZ LAUX

1

Malcolm.Crowe@uws.ac.uk
Fritz.Laux@Reutlingen-University.de

Components proposed

 A syntax for virtual tables: “REST-Views”

 With an optional table listing similar remote DBS

 A vendor-neutral HTTP transport for linking

 Using simple SQL (minimising special features)

 Clever transformations for complex queries

 Generated automatically from original view def

 Reversible transformations for alignment

2

Big Live Data

 If your data originates in lots of databases

 You could copy the data centrally

 Extract-Transform-Load/Big Data

 But if it keeps changing this is not good

 Much better to read just what we need now

 And leave data where it is being maintained

 So suppose our data is remote

 A table’s rows come from different databases

 E.g. Sales or product data from different companies

3

Data is not owned by us

 Much of “Big Data” is randomly harvested

 Schemaless, unstructured, for “exploration”

 And we didn’t arrange it with anyone

 So we have really no idea of semantics

 With GDPR there will be less such data

 Instead we should discuss with providers

 What data they are able/willing to share

 And how we can best make use of it

 Subject to their restrictions on volume, intrusion

4

Such negotiations cost

 Once we have settled what we want

 We don’t want to keep going back

 Our DBMS should avoid this need

 No programming or complex protocols

 Just automatic transformation of views

 We have no detailed knowledge of data

 So we just minimise what we get sent

 By intelligently querying the remote DB

 So: they agree to supply us VIEWS

 E.g.: We are government/UN/group HQ/admin

5

Use HTTP and Json

 Instead of proprietary DBMS connectors

 They give us a login ID to access the data

 And we give them a tiny Web server WS

 Such interfaces are easy to write

 We POST SQL statements over HTTP/HTTPS

 Providing the credentials they have given

 WS uses their DBMS connector to execute

 And send us the results in Json format

 We are going to make this lightweight

6

A derived table

CID A B C …

D1

D1

D2

D3

D3

D3

7

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and
transforming data to suit us as their schemas will all be different)

Contributing databases

 Contributors provide data in a given form

 On request, using HTTP with REST/JSON format

 They probably don’t have it in this form

 So they create a VIEW with the right columns

 Values probably requires some transformation

 Make it available with a given URL

 With access permissions for our view

 Possibly they might allow some updates

8

Defining a contribution

 Probably each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

9

A B C …

Centrally we then have

 The row type CID,A,B,C,..

 The list of contributors with their URLs

CREATE VIEW DT OF (CID..,A..,B..,C..) AS GET
USING T

10

CID URL

D1 URL for D1’s data

D2 URL for D2’s data

D3 URL for D3’s data

T:

 OF gives DT row type (with column data types)

 All columns from T except the last (CID here)

 The remaining columns specify the remote view

Division of responsibility 11

C

DBMS

Views contributed over HTTP transformed
to a common schema

Contributed data remains under C’s
control – C retains responsibility

C interprets requests for change and
Inverts the transformations

HTTP

C’s API

No programming!

API

View configures HTTP access

Change request sent to C

Transforming the query

 As defined the view has a simple table form

 But we don’t want to get even 1MB of data

 Only select required columns, apply filters

 Joins and aggregations get interesting

 We can perform many aggregations remotely

 So we only get a few rows (maybe just one)

 A query can join these with local data

 And optimising such a join is a great idea

 Always leave getting data to after analysis

12

For example

 If W is defined as a join with remote data V

 Aggregating V’s data, GROUP BY a,b,..

 The grouping operation can be remote

 Provided we also group by the joined columns

 View definitions, subqueries, joins

 All lead to known matching columns, exprs

 We can use these when optimising

 We will have some predefined views, joins

 That consume data coming from the remote V

13

Query Rewriting 101 14

 SQL query is a recursive composite structure

 CursorSpecification

 QueryExpression (union/intersect etc)

QuerySpecification (Select List)

 TableExpression (Aggregation|Grouping)

 Table | View | SubQuery

 CursorSpecification

 …

 Select items can contain query expressions

 Filters (where conditions) can go anywhere

T

