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US Congressional Voting 1984, I
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US Congressional Voting 1984

superfund-right-to-sue

crime

duty-free-exports

export-administration-act-south-africa class
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An Inconsistent Data Set

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes no no

2 high no yes no

3 normal no no no

4 normal no no no

5 high yes no yes

6 high yes no yes

7 high no yes yes

8 high no no maybe

9 high no no maybe
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Blocks of Attribute-Value Pairs

a ∈ A and

v be a value of a for some case x,

denoted by a(x) = v,

for complete decision tables if

t = (a, v) is an attribute-value pair then

a block of t, denoted [t ],

is a set of all cases from U that

for attribute a have value v.
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A Data Set

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes no no

2 high no yes no

3 normal no no no

4 normal no no no

5 high yes no yes

6 high yes no yes

7 high no yes yes

8 high no no maybe

9 high no no maybe
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Blocks of Attribute-Value Pairs

[(Temperature, high)] = {1, 2, 5, 6, 7, 8, 9},
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Blocks of Attribute-Value Pairs

[(Temperature, high)] = {1, 2, 5, 6, 7, 8, 9},

[(Temperature, normal)] = {3, 4},
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Blocks of Attribute-Value Pairs

[(Temperature, high)] = {1, 2, 5, 6, 7, 8, 9},

[(Temperature, normal)] = {3, 4},

[(Headache, yes)] = {1, 5, 6},

[(Headache, no)] = {2, 3, 4, 7, 8, 9},

[(Cough, no)] = {1, 3, 4, 5, 6, 8, 9},

[(Cough, yes)] = {2, 7}.
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Elementary Sets of B

Let B be a nonempty subset of the set A of all attributes.

[x]B = ∩{[(a, a(x))]|a ∈ B}.

A union of B-elementary sets is called a B-definable set.
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Elementary Sets of A

[1]A = [(Temperature, high)] ∩ [(Headache, yes)] ∩
[(Cough, no)] = {1, 5, 6},
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Elementary Sets of A

[1]A = [5]A = [6]A = [(Temperature, high)] ∩
[(Headache, yes)] ∩ [(Cough, no)] = {1, 5, 6},
[2]A = [7]A = [(Temperature, high)] ∩ [(Headache, no)] ∩

[(Cough, yes)] = {2, 7},

[3]A = [4]A = [(Temperature, normal)] ∩ [(Headache, no)] ∩
[(Cough, no)] = {3, 4},

[8]A = [9]A =
[(Temperature, high)]∩[(Headache, no]∩[(Cough, no)] = {8, 9}.
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Indiscernibility Relation

The indiscernibility relation IND(B) is a relation on U

defined for x, y ∈ U as follows

(x, y) ∈ IND(B) if and only if a(x) = a(y) for all a ∈ B.

IND(A) = {(1, 1), (1, 5), (1, 6), (2, 2), (2, 7), (3, 3), (3, 4),

(5, 1), (5, 5), (5, 6), (6, 1), (6, 5), (6, 6), (7, 2), (7, 7), (8, 8),

(8, 9), (9, 8), (9, 9)}.
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Lower and Upper Approximations

First definition

BX = {x ∈ U | [x]B ⊆ X},

BX = {x ∈ U | [x]B ∩X 6= ∅.
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Lower and Upper Approximations

First definition

BX = {x ∈ U | [x]B ⊆ X},

BX = {x ∈ U | [x]B ∩X 6= ∅.

Second definition

BX = ∪{[x]B | x ∈ U, [x]B ⊆ X},

BX = ∪{[x]B | x ∈ U, [x]B ∩X 6= ∅).
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Lower and Upper Approximations

The largest B-definable set contained in X is called the
B-lower approximation of X, denoted by appr

B
(X), and

defined as follows

∪{[x]B | [x]B ⊆ X}

the smallest B-definable set containing X, denoted by
apprB(X) is called the B-upper approximation of X, and is
defined as follows

∪{[x]B | [x]B ∩X 6= ∅}.
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An Example

For the concept [(Flu, no)] = {1, 2, 3, 4},

appr
A
([(Flu, no)]) = {3, 4},

apprA([(Flu, no)]) = {1, 2, 3, 4, 5, 6, 7}.
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Probabilistic Approximations

A probabilistic (parameterized) approximation, denoted by
apprα(X), is defined by

∪{[x] | x ∈ U, Pr(X|[x]) ≥ α},

where α is called a threshold and 1 ≥ α > 0.

We excluded the case of α = 0 since then apprα(X) = U for
any X.

Since we consider all possible values of α, our definition of
apprα(X) covers both lower and upper probabilistic
approximations.
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Standard Approximations

If α = 1, the probabilistic approximation becomes the
standard lower approximation.

If α is small, close to 0, the same definition describes the
standard upper approximation.
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All Conditional Probabilities

For the fixed set X and all

equivalence classes [x] from R∗

we may compute the set of all

distinct conditional probabilities Pr(X|[x])

and then sort these numbers in the ascending order.

The number of all probabilistic approximations of X is

smaller than or equal to

the number of elementary sets [x].
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Conditional Probabilities

[x] {1, 5, 6} {2, 7} {3, 4} {8, 9}

P ({1, 2, 3, 4} | [x]) 0.333 0.5 1.0 0
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Probabilistic Approximations

for the concept {1, 2, 3, 4} we may define only three distinct
probabilistic approximations:

appr0.333({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 7},

appr0.5({1, 2, 3, 4}) = {2, 3, 4, 7},

appr1.0({1, 2, 3, 4}) = {3, 4}.
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Experiments - Data

Data set Number of Consistency

cases attributes concepts

Glass 214 9 6 55.14

Hepatitis 155 19 2 65.81

Iris 150 4 3 56.0

Postoperative patient 90 8 3 84.44

Primary tumor 339 17 21 72.27

Wine recognition 178 13 3 61.80
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Extensive Experiments - Iris

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter alpha

E
r
r
o

r
r
a
te

Single experiment

30 experiments

Mining Imperfect Data – p. 25/75



Experiments - Five Data Sets
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An Incomplete Data Set

Attributes Decision

Case Temperature Headache Nausea Flu

1 high – no yes

2 very_high yes yes yes

3 ? no no no

4 high yes yes yes

5 high ? yes no

6 normal yes no no

7 normal no yes no

8 – yes * yes
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Sequential Methods, I

Deleting cases with missing attribute values (listwise
deletion, casewise deletion, complete case analysis)

The most common value of an attribute

The most common value of an attribute restricted to a
concept

Assigning all possible attribute values to a missing
attribute value

Assigning all possible attribute values restricted to a
concept
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Sequential Methods, II

Replacing missing attribute values by the attribute mean

Replacing missing attribute values by the attribute
mean restricted to a concept

Global closest fit

Concept global fit

Imputation

ML method (maximum likelihood)

EM method (expectation-maximization)

Single random imputation

Multiple random imputation
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Parallel Methods

C4.5

CART

MLEM2

Characteristic Relations

Singleton, Subset, and Concept Approximations

Local Approximations

Rule Induction
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Incomplete Data

Missing attribute values:

Lost values are denoted by ?

"do not care" conditions are denoted by *

attribute-concept values are denoted by –

All decision values are specified

For each case at least one attribute value is specified
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Blocks of Attribute-Value Pairs, I

If for an attribute a there exists a case x

such that a(x) =? then the case x

should not be included in any block [(a, v)]
for all specified values v of attribute a,
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Blocks of Attribute-Value Pairs, I

If for an attribute a there exists a case x

such that a(x) =? then the case x

should not be included in any block [(a, v)]
for all specified values v of attribute a,

If for an attribute a there exists a case x

such that a(x) = ∗, then the case x

should be included in all blocks [(a, v)]
for all specified values v of attribute a.
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Blocks of Attribute-Value Pairs, II

If for an attribute a there exists a case x

such that a(x) = − then the corresponding case x

should be included in blocks [(a, v)] for all specified
values v ∈ V (x, a) of attribute a, where

V (x , a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)}.
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An Incomplete Decision Table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high – no yes

2 very_high yes yes yes

3 ? no no no

4 high yes yes yes

5 high ? yes no

6 normal yes no no

7 normal no yes no

8 – yes * yes
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Blocks of Attribute-Value Pairs, III

[(Temperature, high)] = {1, 4, 5, 8},
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An Incomplete Decision Table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high – no yes

2 very_high yes yes yes

3 ? no no no

4 high yes yes yes

5 high ? yes no

6 normal yes no no

7 normal no yes no

8 – yes * yes
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Blocks of Attribute-Value Pairs, III

[(Temperature, high)] = {1, 4, 5, 8},

[(Temperature, very_high)] = {2, 8},
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Blocks of Attribute-Value Pairs, III

[(Temperature, high)] = {1, 4, 5, 8},

[(Temperature, very_high)] = {2, 8},

[(Temperature, normal)] = {6, 7},

[(Headache, yes)] = {1, 2, 4, 6, 8},

[(Headache, no)] = {3, 7},

[(Nausea, no)] = {1, 3, 6, 8},

[(Nausea, yes)] = {2, 4, 5, 7, 8}.
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Characteristic sets KB(x), I

Characteristic set KB(x) is the intersection of

the sets K(x, a), for all a ∈ B:

If a(x) is specified, then K(x, a) is the block [(a, a(x)],

If a(x) = ∗ or a(x) =? then the set K(x, a) = U ,

If a(x) = −, then K(x, a) is equal to the union

of all blocks of attribute-value pairs (a, v), where
v ∈ V (x, a).
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Characteristic sets KA(x), II

KA(1) = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {1, 8},
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Characteristic sets KA(x), II

KA(1) = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {1, 8},

KA(2) = {2, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},

KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},

KA(4) = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},

KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},

KA(6) = {6, 7} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6},

KA(7) = {6, 7} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and

KA(8) = ({1, 4, 5, 8} ∪ {2, 8}) ∩ {1, 2, 4, 6, 8} ∩ U = {1, 2, 4, 8}.
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Definability of Sets

A union of some intersections

of attribute-value pair blocks,

in any such intersection all attributes

should be different and attributes are members of B,

will be called B-locally definable sets.
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Definability of Sets

A union of some intersections

of attribute-value pair blocks,

in any such intersection all attributes

should be different and attributes are members of B,

will be called B-locally definable sets.

A union of characteristic sets KB(x),

where x ∈ X ⊆ U will be called

a B-globally definable set.
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Definability of Sets

A union of some intersections

of attribute-value pair blocks,

in any such intersection all attributes

should be different and attributes are members of B,

will be called B-locally definable sets.

A union of characteristic sets KB(x),

where x ∈ X ⊆ U will be called

a B-globally definable set.

Any set X that is B-globally definable

is B-locally definable,

the converse is not true.
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Singleton Approximations

BX = {x ∈ U | KB(x) ⊆ X},

BX = {x ∈ U | KB(x) ∩X 6= ∅}.
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Singleton Approximations

BX = {x ∈ U | KB(x) ⊆ X},

BX = {x ∈ U | KB(x) ∩X 6= ∅}.

A{1, 2, 4, 8} = {1, 2, 4, 8},

A{3, 5, 6, 7} = {3, 6, 7},

A{1, 2, 4, 8} = {1, 2, 4, 5, 8},

A{3, 5, 6, 7} = {3, 5, 6, 7}.
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Singleton Approximation and Definability

{3, 5, 6, 7} = A{3, 5, 6, 7} is not A-locally definable—

no way to separate cases: 5 from 4 and 8:

[(Temperature, high)] = {1, 4, 5, 8},

[(Temperature, very_high)] = {2, 8},

[(Temperature, normal)] = {6, 7},

[(Headache, yes)] = {1, 2, 4, 6, 8},

[(Headache, no)] = {3, 7},

[(Nausea, no)] = {1, 3, 6, 8},

[(Nausea, yes)] = {2, 4, 5, 7, 8}.
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Subset Approximations

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X},

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X 6= ∅}.
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Subset Approximations

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X},

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X 6= ∅}.

A{1, 2, 4, 8} = {1, 2, 4, 8},

A{3, 5, 6, 7} = {3, 6, 7},

A{1, 2, 4, 8} = {1, 2, 4, 5, 8},

A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.
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Concept Approximations

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X},

BX = ∪{KB(x) | x ∈ X,KB(x)∩X 6= ∅} = ∪{KB(x) | x ∈ X}.
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Concept Approximations

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X},

BX = ∪{KB(x) | x ∈ X,KB(x)∩X 6= ∅} = ∪{KB(x) | x ∈ X}.

A{1, 2, 4, 8} = {1, 2, 4, 8},

A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.
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Local Approximations

A set T of attribute-value pairs, where all attributes belong
to the set B and are distinct, will be called a B-complex . A

B-local lower approximation of the concept X is defined as
follows

∪{[T ] | T is a B-complex of X , [T ] ⊆ X }.

A B-local upper approximation of the concept X is defined
as the minimal set containing X and defined in the following
way

∪{[T ] | ∃ a family T of B-complexes of X

with ∀ T ∈ T , [T ] ∩X 6= ∅}.
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Data Sets

Data set Number of

cases attributes concepts

Breast cancer (Slovenia) 277 9 2

Hepatitis 155 19 2

Image segmentation 210 19 7

Lymphography 148 18 4

Wine 178 13 3
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Incomplete Data Sets

For every data set a set of templates was created.

Templates were formed by replacing incrementally (with 5%
increment) existing specified attribute values by lost values.

We started each series of experiments with no lost values,
then we added 5% of lost values, then we added additional
5% of lost values, etc., until at least one entire row of the
data sets was full of lost values.

Then three attempts were made to change configuration of
new lost values and either a new data set with extra 5% of
lost values was created or the process was terminated.

For example, for the breast cancer data set that limit was
45% (in all three attempts with 50% of lost values, at least
one row was full of lost values).
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A pattern of 40% missing attribute values

Case Temperature Headache Nausea Flu

1 high ? ? yes

2 very_high ? yes yes

3 ? no no no

4 high ? yes yes

5 ? ? yes no

6 normal yes ? no

7 normal no yes no

8 ? yes ? yes

9 ? no yes yes

10 very_high no ? yes
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Breast Cancer, Certain Rules
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Breast Cancer, Possible Rules
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Hepatitis, Certain Rules
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Hepatitis, Possible Rules
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Image Segmentation, Certain Rules
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Image Segmentation, Possible Rules
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Lymphography, Certain Rules
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Lymphography, Possible Rules
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Wine, Certain Rules
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Wine, Possible Rules
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Error rates

Data set Error rate in percent

better of best rough

MCV-AV and CMCV-CAV set approach

Breast cancer 29.96 27.08

Echocardiogram 22.97 27.03

Hepatitis 19.35 17.42

Image segmentation 64.76 63.81

Lymphography 41.22 37.84

Wine recognition 31.46 26.97

Mining Imperfect Data – p. 67/75



Breast Cancer (Slovenia) Data Set
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Image Segmentation Data Set
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Iris Data Set
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Lymphography Data Set
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Wine Data Set
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Wine data set, lost values, certain rule sets

Percentage of Average Standard Z score

lost values error rate deviation

0 7.66 1.32

5 7.17 1.74 1.22

10 7.13 2.00 1.20

15 8.76 1.85 −2.66

20 7.06 1.38 1.72

25 7.27 1.55 1.06

30 6.20 1.39 4.17

35 6.55 1.16 3.43

40 6.8 1.28 2.56

45 7.73 1.48 −0.21
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Wine data set, lost values, possible rule sets

Percentage of Average Standard Z score

lost values error rate deviation

0 7.66 1.32

25 7.64 1.63 0.05

30 6.33 1.15 4.15

35 6.57 1.12 3.44

40 6.22 1.29 4.27

45 7.79 1.30 −0.39

50 7.12 0.68 2.00

55 7.68 0.98 −0.06

60 6.89 0.78 2.74

65 8.31 1.17 −2.04

Mining Imperfect Data – p. 74/75



Some conclusions

An interpretation of the lost values seems to be the best
approach to missing attribute values,

An interpretation of the "do not care" conditions and
certain rule sets is the worst approach,

All three approaches: rough set, probabilistic and CART
are comparable in terms of an error rate,

For some data sets increasing incompleteness reduces
the error rate.

Mining Imperfect Data – p. 75/75
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