

Panel ICN/COCORA/CTRQ/SOFTNETWORKING

Topic: Quality and Global Resource Utilization in the Internet of Things Environments

NexComm 2016 Lisbon, 20-25 February 2016

PANEL IOT

Moderator

Eugen Borcoci, University "Politehnica" of Bucharest (UPB), Romania

Panelists

- Seppo Yrjölä, Nokia Networks, Finland
- Richard Li, Huawei Technologies, USA
- Mohammed Rajabali Nejad, Universiteit Twente, the Netherlands
- Nageswara Rao, Oak Ridge National Laboratory, USA
- Eugen Borcoci, University "Politehnica" of Bucharest (UPB), Romania

IoT environment, resources, quality, ..

- IoT : emerging topic of high technical, social, and economic significance
- Products, durable goods, transportation entities, industrial and utility components, health equipments, sensors, ...and many other objects are combined with Internet connectivity
- Powerful data analytic capabilities support the processing of huge amount of data
- Forecast: more than 50 billion connected IoT devices and a global economic impact of more than \$11 trillion by 2025

Significant challenges

- Development of a large range of applications
- Technical aspects Integration in the Future Internet
- Socio-economical aspects

Possible subjects for this panel:

- What are the most important challenges and open areas of research in the domain?
 - Scalability, security, heterogeneity, inter-operability, integration, ...
 - Big Data –related issues
 - Candidate for supporting technologies:
 - Heterogeneous networking
 - Cloud/edge computing, SDN, NFV?
- What types of "resources" are involved in IoT?
- Novel areas of application?
 - E.g. From V2X+ Manually Driven Vehicle –to Autonomous Driving Vehicle
 - New applications for cooperative autonomous driving
- What means "quality of services" in IoT?
 - Are there some special QoS/QoE aspects in IoT?

NexComm 2016 Lisbon, 20-25 February 2016

- Thanks !
- Floor for the speakers.....

NexComm 2016 Lisbon, 20-25 February 2016

PANEL IoT Quality and Global Resource Utilization in the Internet of Things Environments

From VANET to Internet of Vehicles

Eugen Borcoci University Politehnica Bucharest Electronics, Telecommunications and Information Technology Faculty (ETTI)

Eugen.Borcoci@elcom.pub.ro

IoT

- IoT: Major trend in Internet development
- Very large range of applications [1, 2]
 - In all segments of the society

[2] Source: Ala Al-Fuqaha, et.al "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications", IEEE Comm. Surveys & Tutorials, Vol. 17, No. 4, 2015

loT:

Different views on functional architecture [2]

	IoT Ele	ements	Samples		
IoT	Identification	Naming	EPC, uCode		
	Identification	Addressing	IPv4, IPv6		
Elements &Examples [2]	Sensing		Smart Sensors, Wearable sensing devices, Embedded sensors, Actuators, RFID tag		
Access technologies	Communicatio	n	RFID, NFC, UWB, Bluetooth, BLE, IEEE 802.15.4, Z-Wave, WiFi, WiFiDirect, , LTE-A		
	Computation	Hardware	SmartThings, Arduino, Phidgets, Intel Galileo, Raspberry Pi, Gadgeteer, BeagleBone, Cubieboard, Smart Phones		
		Software	OS (Contiki, TinyOS, LiteOS, Riot OS, Android); Cloud (Nimbits, Hadoop, etc.)		
	Service		Identity-related (shipping), Information Aggregation (smart grid), Collaborative- Aware (smart home), Ubiquitous (smart city)		
	Semantic		RDF, OWL, EXI		

- Vehicular Networks [3,4,5]
- Early development: > 1990, long before IoT concepts
- Communication types V2V, V2R, V2I, V2X

Applications and use cases

- Active road safety applications
 - Warning: Intersection collision, Overtaking vehicle, Head/Rear-end collision risk, Emergency vehicle, Pre-crash, Stationary vehicle, Traffic condition, Signal violation, Control loss..
 - Assistance: Lane change, Co-operative merging
 - Emergency electronic brake lights
- Traffic efficiency and management applications
 - Speed management, Co-operative navigation
- Infotainment applications
 - Co-operative local services, Global Internet services:

Vehicular Networks

- Rich set of requirement
 - a) Strategic
 - b) Economical
 - c) Legal
 - d) Standardization
 - e) System (technical) capabilities requirements
 - Functional: security, privacy, reliability, connectivity (V2V, V2I, V2X), positioning, mode (unicast, geocast, broadcast)
 - Performances: bandwidth, delay, QoS, (depending on classes of applications)

Organizations and Standards

- ITS, IEEE , ITU, ISO, ARIB, ETSI, ...
- IEEE 802.11p, WAVE, IEEE 1609.x, ISO CALM, …

Access technologies

Bluetooth, ZigBee, WiFI, WiMAX, 3G/4G- LTE, 5G,

Vehicular Networks

Example WAVE stack (ITS, IEEE, ETSI, ..)

Current trends:

- Vehicular Networks (VANET) → Internet of Vehicles (IoV)
- Novel features, e.g.:
 - Autonomous driving
 - Cooperative working- there is a strong need for this
- IoV can be seen as part of IoT "umbrella"
- Cooperation with other IoT applications
- Novel support technologies (resources)
 - Enrich the V2X –based communications with additional features
 - Rich set of sensors and smart devices
 - Cloud computing/ Edge(Fog) computing
 - 5G Hetnet
 - Software Defined Networking (SDN)
 - Network function Virtualization (NFV)
 - Information Centric Networking (ICN/CCN)

• IoV example : Vehicular Cloud Computing (VCC) [4, 5]

Services:

- Network as a service (NaaS)
- Storage as a service (STaaS)
- Cooperation as a service (CaaS)
- Computing as a service
- Information as a service (INaaS)
- Entertainment as a service (ENaaS)
- Pictures on a wheel as a service

Formation of VC infrastructure

- Stationary VC formation
- Linked with a fixed infrastructure
- Dynamic formation

IoV example : Vehicular Cloud Computing (VCC) [5]

Architecture

IoV example : Vehicular Cloud Computing (VCC) [5]
 VCC Taxonomy

IoV example : Vehicular Cloud Computing (VCC) [5]

- Conclusions
 - IoV -emergent technology- extension of VANET
 - Still many challenges to solve and open research issues
 - Scalability
 - Security
 - Real-time response
 - Reliability
 - Harmonization within the IoT general framework
 - Usage of support technologies: Cloud computing, edge computing, SDN, NFV, etc.

Thank you !

References

- 1. "The Internet of Things: an overview ", https://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-201510
- 2. Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash, "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications", IEEE Communications Surveys & Tutorials Vol. 17, No. 4, 2015
- Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk, Boangoat Jarupan, Kenneth Lin, and Timothy Weil, "Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions", IEEE Communications Surveys &Tutorials, Vol. 13, No. 4, 2011
- M.Gerla and L.Kleinrock, "Vehicular networks and the future of the mobile internet", Computer Networks, 2011, www.elsevier.com/ locate/comnet, doi:10.1016/j.comnet.2010.10.015
- 5. Md Whaiduzzaman, Mehdi Sookhak, Abdullah Gani, Rajkumar Buyya "A survey on vehicular cloud computing ", Journal of Network and Computer Applications 40(2014) 325–344
- 6. A. Festag, "Cooperative Intelligent Transport Systems (C-ITS) Standards in Europe," *IEEE Commun. Mag., vol.* 12, no. 52, Dec. 2014, pp. 166–72.
- 7. J. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United States," *Proc. IEEE, vol.* 99, no. 7, July 2011, pp. 1162–82.

Acronym list

- ARIB Association of Radio Industries and Businesses)
- CALM Continuous Air-interface Long and Medium range
- DSRC Dedicated Short-Range Communications)
- D2D Device to Device
- EPC Electronic Product Code
- LTE Long-Term Evolution
- LTE-A Long-Term Evolution Advanced
- M2M Machine-to-Machine
- NFC Near Field Communication
- OBU On Board Unit
- RSU Road Side Unit

Acronym list

Semantic Web technologies

- RDF Resource Description Framework
- OWL Web Ontology Language
- W3C World Wide Web consortium
- EXI Efficient XML Interchange format
- V2V
 Vehicle to Vehicle
- V2R Vehicle to Road
- V2I Vehicle to Infrastructure
- V2X Vehicle to anything
- VCC Vehicular Cloud Computing
- UWB Ultra-Wide Bandwidth
- WAVE Wireless Access in Vehicular Environments
- WSNs Wireless Sensor Networks

A fundamental change to our business environment

- Create and deliver on-demand with a diverse service offering
- Tailor capabilities for new segments with different characteristics
- Multitude of ecosystems
- Multitude of business models

Sharing economy New opportunities mean new competition...

Local operators, Verticals, Internet domain

- Monetize new services
- Competitive Advantage where to compete
- Co-opetition where to partner

and the way we do business

New customers

Tailored E2E solutions for

- Industry 4.0
- Enterprises
- Governments, cities and societies
- Verticals

New use cases

- Extremely fast and secure, e.g., real-time medical imaging
- Low latency, critical availability e.g., healthcare, autonomous driving
- Machine communications with millions of sensors, e.g., factories, smart cities

New business models

- Connectivity+
- Context
- Content
- Commerce
- X as-a-Service

Huge market opportunity in the IoT ecosystem

					>€100B or >50% 2015-25 CAGR			>€10B or >30% 2015-25 CAGR		
2025 market projection in €	Mobility	Industries	Utilities	Digital Health	Smart Homes	Retail & Services	Public Safety	Smart City	IT	
Applications, Analytics and End-User Services	203B	110B	31B	23B	19B	18B	18B	6B	6B	434B (90%)
Application Enablement Platform	11B	3B	5B	2B	2B	0.6B	0.3B	3B	0.3B	28B (6%)
Connectivity Management Platform	2B	0.4B	0.8B	0.3B	0.2B	0.1B	0.04B	0.04B	0.002B	4B (1%)
Cellular Connectivity	6B	0.04B	0.02B	0.08B	0.01B	0.7B	0.7B	0.4B	0.01B	8B (2%)
loT modules	2B	2B	1B	0.6B	2B	3B	0.1B	0.3B	0.4B	9B (2%)
Source: Machina Research and Nokia	224B (46%)	117B (24%)	39B (8%)	26B (5%)	24B (5%)	19B (4%)	19B (4%)	10B (2%)	7B (1%)	484B
8 © Nokia 2016										

•

ГГ

Ø

Let's work together to design and enable unique 5G

Thank you

UNIVERSITY OF TWENTE.

QUALITY AND GLOBAL RESOURCE UTILIZATION IN THE INTERNET OF THINGS ENVIRONMENTS

MOHAMMAD RAJABALI NEJAD, ASSISTANT PROFESSOR LABORATORY OF DESIGN, PRODUCTION AND MANAGEMENT

February 2016, Lisbon

OVERVIEW

- Societal demands
- Design challenges
- Performance metrics
- A factual observation
- Considerations

n

WHAT TO PAY ATTENTION TO? IN COMPLEX PRODUCTS

disciplines views requirements stakeholders functions structure behaviour etcetera

and still ensure efficiency

UNIVERSITY OF TWENTE.

PERFORMANCE METRICS

- Time to the market
- Quality
- Cost

UNIVERSITY OF TWENTE.

CONSUMER SATISFACTION

Brombacher 2005, RESS, Trends in the reliability analysis of consumer electronics.

UNIVERSITY OF TWENTE.

CONSIDERATIONS DESIGN RELATED

- Fast feedback system
- New design processes
 - learn from strongly innovative products
- More efforts in upfront design
- Root cause analysis of
 - failures
 - quality problems
- Reviewing performance metrics

Performance Challenges of SDN Solutions

Nagi Rao Oak Ridge National Laboratory raons@ornl.gov

Panel on Quality and Global Resource Utilization in the Internet of Things Environments

The International Symposium on Advances in Software Defined Networking and Network Functions Virtualization February 21 - 25, 2016 Lisbon, Portugal

1

Promise of Software Defined Networking

Unprecedented Promised Capabilities

- Networks "programmed" like computers using standard protocols and libraries
 - Speed: several "manual" operations are automated
 - Scale: thousands of network tasks executed in seconds to minutes
 - Ease of use: Northbound APIs re-use of codes, e.g. python OF scripts
 - Increased sophistication network codes: optimization of paths, complex configuration, etc., using libraries
- Standardization of protocols and APIs
 - Network devices offer uniform APIs
 - Controllers are swappable e.g. OpenFlow
 - Users and network operators do not need to learn custom CLIs
 - Transportable northbound codes: sophisticated scripts developed once

Current SDN Technologies: Even if complex SDN codes are developed, performance information is missing

In short, we do not know how well controllers and switches perform for IOT

• It is not just email – we control and monitor devices

Rapid Technology Development

- Too many controllers:
 - Open source
 - ODL (hydrogen, lithium, beryllium), Floodlight, ONOS, pox, nox, etc.
 - limited support and open documentation
 - very little performance characterization
 - Custom
 - Cisco, HP, Ciena, others
- Too much variability in device implementation
 - HP, Brocade, etc. close to native OpenFlow
 - Cisco onep layer
 - limited support and documentation
 - very little performance characterization
- Too many controller + switch combinations: not practical to test them all
- Vendor sales pitches are not generally helpful
 - very hard to extract technical information for specific scenarios
 - need technical support for implementation not just salespersons

Choosing Controllers and Switches?

Typically, orchestrator codes are developed/composed by network engineers for a class of applications, e.g. network flow balancing in data center and long-haul Application performance depends on switch, controller and orchestrator

- controllers in charge of switches in domain LAN southbound API
- switches implement the flows instructed by controllers
- orchestrators manage the networks through controllers

But, controllers and switches are to be selected – which ones?

Impulse Response Method: Path failover scenario Orchestrators detect path degradation and activates controllers Controllers install new flow entries on the switches

Impulse Response Methods:

- Subject system to periodic forced path failovers:
- Keep track of TCP throughput at hosts

Throughput recovery depends on:

- 1. responsiveness of controller
- 2. responsiveness and flow implementation on switch

Impulse Response: Estimated based on Measurements

Observations:

- 1. dpctl controller is seconds faster
- 2. Switch 1 is faster than switch 2 by a few seconds

Impulse Responses Provide Performance Information:

- Sharp response implies fast recovery
- Width of response indicates how responsive recovery is

Open Test Harness for Performance Testing

Concept:

General test harness for controllers and devices: normalized performance

plug in a new controller or device apply impulses and estimate response regression output: normalized performance

• public, open standard site/way to upload new controllers and devices

Develop Canonical Test Scenarios: data center, LAN, WAN Generic applications on hosts data transfers real-time monitoring and control messaging, others

Performance parameters: for controllers and switches switching response times number of flows handled per unit time data throughput and jitter, others

Develop Canonical Harnesses: Few neutral, open places house them

Desired Result: Vendors and open sources communities, publish performance results along with their product releases

7

NexComm 2016 Panel Discussion ICN/COCORA/CTRQ/SOFTNETWORKING

Positioning Topic: Identifier-Oriented Networking for IoT

Richard Renwei Li, Ph.D. Chief Architect, Future Networks Huawei USA renwei.li@huawei.com

> February 21 - 25, 2016 Lisbon, Portugal

HUAWEI TECHNOLOGIES CO., LTD.

Do we need to Address Every IoT Device by IP?

- 50 billion things will be connected by 2020 (Cisco)
- More than 50% of internet bandwidth is used for M2M data traffic (IDC Predictions 2015)

Can not Address Billions of Things through traditional IP model

Things are up and down due to low power
Device Identity formats vary – sensor and application types

Things may move more often than hosts/PCs

Can not scale connectivity with current IP Network Layer

A device Identity is significant and needs its own plane in Internetwork layer model

IoT Device Characteristics

IOT vs. Traditional Internet

- Lightweight connectivity low power, low throughput, low-performance CPU
- Things move, join or exit from a network dynamically
- Things have no stable adjacencies or gateways
- Things have varying degree of mobility home-net (least), Industrial network, vehicle network (highest)

How to capture the above characteristics?

> Through Identity based intelligence

Identifier-Oriented Networking Protocol Stack

Current IP: Two Meanings of IP Addresses

- 1) Identity: What it is (Identity)
- 2) Location: Where it is (Location)

- ID for universal mobility and global reachability
- Locator for routing: address aggregation and longest prefix matching
- ID can represent user, host, content, and virtual network
- Locator varies from a place to another while ID keeps unchanged

ION: Application Model

Enables Everything through an ID Aware Model

ION Sockets

- Applications connect with ID based sockets
- IP layer locates source and destination ID accurately and sets up path

1. Point to Point

2. P2MP & MP2MP

Easier To Manage Communication Relationships with IDs

- **Point to Point** 1.
 - Single ID For Multiple Applications
 - **Cross-application Channels**
- **Group Communication with ID** 2.
 - Both P2MP and MP2MP
 - Same as (1)
- Support Active/Passive Comm. 3.
 - Synchronous when ID is online
 - Asynchronous when offline.

Unified ID Space

- All apps get same unique ID ('who is').
- ID Mapping system ensures ID is unique and globally accessible

ION: Examples

MobilityFirst

A project funded by USA NSF in Future Internet Architecture (FIA) program

LISP

Location Identifier Separation Protocol

SLIM

Separation for Location and Identifier for Mobility

HIP

Host Identity Protocol

HIMALIS

Heterogeneity Inclusion and Mobility Adaptation through Locator ID Separation

LINA

Location Independent Network Architecture

GSE

Global, Site, End system

ION Unlocks New Opportunities Beyond Mobility

Delivers Better Service Experience

- Optimal traffic path selection
- No detours to mobility anchor point
 Simplified Network Operations
 - Unified ID plane for any fixed and mobile access
- ID Agnostic Stable Core
 - FIB remains locator based
 - As user moves, no route change triggers

Benefits and Opportunities from Layer 3.5

- □ L3.5 Communication
 - P2P Communications without servers
 - Cross-silo communication possible
 - ID based Group-communication (PIM free)
- □ Accelerated applications deployment over L3.5
 - Network/Topology change agnostic
 - Focus on business logic not network
- □ Refined L3.5 Edges
 - Fine grained ID aware TE, Policy, LBs
 - ID based End to End Security

Huawei's IP2020

HUAWEI TECHNOLOGIES CO., LTD.

Thank you

www.huawei.com

HUAWEI TECHNOLOGIES CO., LTD.