
Computing Techniques for
Parallel and Distributed Systems with
an Application to Data Compression

Sergio De Agostino

Sapienza University di Rome

Parallel Systems

A parallel random access machine
(PRAM) is a computational model with
many processors and a shared memory.

processorsprocessors

shared memory

EREW and CREW PRAMs

An EREW (exclusive read, exclusive write)
PRAM is a machine where no memory
access conflict is allowed.

When a PRAM algorithm is designed, it
might come “natural” to allow cuncurrent
reading (CREW) which can be managed
by specific techniques.

Distributed Systems

Exclusive read on the PRAM implies
message passing between disjoint pairs of
processors on a distributed system.

Brodcasting a message from one to manyBrodcasting a message from one to many
processors corresponds to a cuncurrent
read on the PRAM.

The possible slowdown, moving from a
shared memory to a distributed one,
depends on the network topology.

Outline Part 1

Parallel Computing Techniques:

- prefix computation

- list ranking

- pointer jumping

- Euler tour

Applications to file zipping and unzipping.

Distributed implementations.

Outline Part 2

LZW compression.

Parallel complexity issues.

Distributed Implementations.Distributed Implementations.

Parallel decompression.

LZW decompression and MapReduce.

Conclusion.

Questions.

Prefix Computation

Let S be an ordered set {s1,…, sn} with an
associative operation●.

A prefix computation calculates:

ss1

s1 ● s2

s1 ● s2 ● s3

………….

s1 ● s2 ●... ● sn-1 ● sn

Parallel Prefix

Store S into an array S[] (si = S[i])

Parallel algorithm:

for j := 0 to lg(n) - 1 do
for i := 2j +1 to n parallel-dofor i := 2j +1 to n parallel-do

S[i] := S[i-2j] ● S[i]

The algorithm performs the prefix
computation in logarithmic time with a
linear number of processors on an EREW
PRAM.

Prefix Sum

S= {7, 6, 1, 8, 5, 3, 1, 9} with ● = + .

7 6 1 8 5 3 1 9

7 13 7 9 13 8 4 107 13 7 9 13 8 4 10

7 13 14 22 20 17 17 18

7 13 14 22 27 30 31 40

Prefix sums are computed.

Prefix Minimum

x●y = min {x, y} is such that (x●y) ●z= x●(y ●z).

● is associative.

The prefix minimum on the ordered setThe prefix minimum on the ordered set

S= {7, 6, 1, 8, 5, 3, 1, 9} is:

{7, 6, 1, 1, 1, 1, 1, 1}

It can be computed with the same
algorithm used for the prefix sums.

List Ranking

Linear list: b a b c e

List ranking: 1 2 3 4 5

List ranking can be reduced to prefix sum:List ranking can be reduced to prefix sum:

- associate a 1 to each element of the list;

- compute ranks with prefix sums.

List ranking is linear pointer jumping

Pointer Jumping

Find the roots in a forest of rooted trees.

Use a parent array as data structure.

Jumping procedure with cuncurrent read:

for i := 1 to n do in parallel
while parent[parent[i]] > 0

parent[i] ← parent[parent[i]]

Each node knows its root in O(log n) time
with O(n) processors (n nodes number).

Example

Computing the Paths

O(nh) processors compute each path from
a node to its root in O(log h) time with h
maximum height of a tree.

Build an n x h matrix by substituting:Build an n x h matrix by substituting:

parent[i] ← parent[parent[i]]

with a copy and append operation from
the column indexed by the last element if it
is greater than zero.

Example

column: 1 2 3 4 5 6 7 8 9

step 0: 0 1 0 2 3 5 6 5 3

step 1: 0 1 0 2 3 5 6 5 3

0 1 0 3 5 3 0
--

step 2: 0 1 0 2 3 5 6 5 3

0 1 0 3 5 3 0

0 0 3 0

0

Euler Tour Technique

Reduce pointer jumping to list ranking.

F forest of doubly linked rooted trees.

v node in the forest.v node in the forest.

d(v) number of children of v.

Replace each node v by V[1…d(v)+1].

Each element of the array V is a copy of v.

Making a Linear Forest

Children w1…wd(v) are replaced by arrays
W1[1…d(w1)+1] … Wd(v)[1…d(wd(v))+1]

Link V[i] to Wi [1] if i < d(v)+1i

Link Wi [d(wi)+1] to V[i+1]

Each tree of the forest is reduced to a
linear list from the first copy of the root to
the last one.

Example

From the above parent pointer
representation to the following linear list
(after doubling the links):

4  3  2  3  7  1  7  13  7
 3 10 3 4 8 4

Applications

Trees in a forest are found by list ranking.

For each list, an array A stores its entries.

For each node, associate a 1 to its firstFor each node, associate a 1 to its first
entry (copy) and a -1 to the other ones in a
second array B.

Prefix sums on B give in each position the
level of the corresponding node in the tree.

Example

level 1

level 2

level 3

level 4

4  3  2  3  7  1  7  13  7
 3 10 3 4 8 4

4 3 2 3 7 1 7 13 7 3 10 3 4 8 4

1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1

1 2 3 2 3 4 3 4 3 2 3 2 1 2 1

Computing the Path to an Ancestor

4 3 2 3 7 1 7 13 7 3 10 3 4 8 4

1 2 3 2 3 4 3 4 3 2 3 2 1 2 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 10 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Prefix sum selects the sublist:

1 7 13 7 3 10 3 4

4 3 4 3 2 3 2 1

Prefix min on the levels finds the path:

4 3 3 3 2 2 2 1

EREW vs CREW PRAM

The Euler tour technique requires O(log n)
time even if h << n.

Also, computing each path from a node to
its root by the Euler tour techniqueits root by the Euler tour technique
requires O(n2) processors even if h << n.

If h << n, handling cuncurrent reading by
standard broadcasting techniques might
be more advantageous.

Lempel-Ziv Data Compression

Lempel-Ziv (LZ) coding techniques are
based on string factorization.

Zip compressors are based on the so-
called LZ1 string factorization process.called LZ1 string factorization process.

On the other hand, LZW compressors are
based on the so-called LZ2 string
factorization process.

LZ1 Factorization

A finite alphabet, S in A*.

LZ1 factorization: S = f1f2… fi…fm where

- fi is the longest substring occurring
previously in f f … f , if f is not thepreviously in f1f2… fi-1, if fi is not the
empty string;

- fi is the current alphabet character,
otherwise.

Factors are substituted by pointers to
previous occurences in the input string.

LZ1 Coding

The pointer qi=(di,li) codifies fi, where:

di is the displacement back from the
position of fi to the position of its previous
occurrence in S if it exists, 0 otherwise;

i
occurrence in S if it exists, 0 otherwise;

li is the factor length;

If di = 0, then fi is an alphabet character
and it is inserted uncompressed in the
coding of S.

Example

Input String

aabbaabbbabbaa

FactorizationFactorization

a, a, b, b, aabb, ba, bbaa

Coding

(0,1)a (1,1) (0,1)b (1,1) (4,4) (5,2) (8,4)

Implementations

In the practical implementations, di and li
are bounded by a constant.

For example, most Zip compressorsFor example, most Zip compressors
employ usually a window of length 32kB
(di ≤ 32 x 103) and 256 is the maximum
length of a match (factor) (li ≤ 256).

Hashing

Hashing techniques associates a substring
in the current position to the position of
one of its occurrences in the window
(Waterworth [1987], Brent [1987], Whiting,
George and Ivey [1991], Gailly and Adler
(Waterworth [1987], Brent [1987], Whiting,
George and Ivey [1991], Gailly and Adler
[1991]).

The maximum match length with such
position defines the current factor.

Parallelization

The practical implementations of the LZ1
method (zip, gzip, winzip, pkzip) can be
executed optimally on a PRAM EREW in
logarithmic time by a reduction of thelogarithmic time by a reduction of the
string factorization problem to the problem
of computing the path from a leaf to the
root in a tree.

Cinque, De Agostino & Lombardi[MCS’10]

Previous Works

Naor [ICALP91]

Crochemore & Rytter [IPL91]

De Agostino & Storer [DCC92]De Agostino & Storer [DCC92]

Nagumo, Lu & Watson [DCC95]

Farach & Muthukrishnan [SPAA95]

Hirschberg and Stauffer [PPL97]

De Agostino [DC00, IS01, PPL04, DCC09]

Reduction: Allocating the Nodes

Allocate n+1 nodes v1… vn+1 where n is
the length of the input string S.

vi is associated with position i in S (vn+1

corresponds to the end of the input string).
i n+1

corresponds to the end of the input string).

In parallel for each position i of S,
processor i computes the factor matching
a copy in one of the positions i-w, …, i-1
(w is the window length).

Reduction: Making the Tree

Node vi is linked with a parent pointer to
the node corresponding to the position
next to the factor computed in i.

We obtain a tree rooted in vv .We obtain a tree rooted in vvn+n+11.

The factorization of S is provided by the
path from the leaf v1 to the root vvn+n+11..

Each node has at most L children where L
is the maximum factor length.

From Parent Pointers to Double Links

F forest of k-ary trees with k=L.

For each node vi of F, allocate L locations
initially set to 0.

If node vj is a child of vi, then i - L -1 < j < i.

Processor j sets the (i-j)-th location to 1.

The path from the leaf v1 to the root vvn+n+11 is
computed by means of the Euler tour
technique.

Parallel Decompression

q1q2… qi…qm is the sequence of pointers
encoding the input string S.

qi = (di, li) for 1 ≤ i ≤ m.

Decompression can be executed optimally
on an EREW PRAM in O(log n) time,
where n is the output string length, by
reducing such problem to the one of
computing the connected components in a
forest of rooted trees.

Computing the Factor Positions

s0 = 0; si = l1 + l2 +…+ li for 1 ≤ i ≤ m

si +1 and si+1 are the positions of the first
and last character of the (i+1)-th factor of
the string to compute, for 0 ≤ i < m.the string to compute, for 0 ≤ i < m.

sm is the string length.

s1 ... sm are computed by parallel prefix.

Associate to each position i of the string a
node vi, for 1 ≤ i ≤ sm.

The Making of the Forest

The parent array is the following:

- If di+1 > 0, for 0 ≤ i < m, positions
si+1…si+1 store pointers to positions
s +1- d …s - d , respectively.

i i+1
si+1- di+1…si+1- di+1, respectively.

- If di+1 = 0, then si+1 = si+1 is a root and
corresponds to the position of an
uncompressed character.

Observations

The number of rooted trees in the forest is
equal to the alphabet cardinality.

The nodes of each tree correspond to the
positions in the string of the alphabetpositions in the string of the alphabet
character represented by the root.

Each root corresponds to the first position
of a different character in the string.

Each node has at most w children.

From Parent Pointers to Double Links

F forest of k-ary trees with k=w.

For each node vi of F, allocate w locations
initially set to 0.

If node vj is a child of vi, then i < j < i+w+1.

Processor j sets the (j-i)-th location to 1.

The rooted trees of F are computed by
means of the Euler tour technique.

How to Parallelize in Practice

Eliminate or reduce as much as possible
the interprocessor communication during
the computational phase.

Ensuring scalability and robustness.Ensuring scalability and robustness.

An array of processors with distributed
memory and no interconnections (except
the ones to a central switch) is the
simplest model (star topology).

From the PRAM to the Star Architecture

Information, exchanged globally among
processors in constant time on the PRAM,
might take linear time on the Star.

From Global to Local Computation

Moving from global to local computation
often implies the output of solutions
approximating the sequential one.

Scaling up the distributed system usuallyScaling up the distributed system usually
deteriorates the approximating solution.

This is evident with string factorization if
we apply the process in parallel to blocks
of data independently.

Approximation

With n/kw processors, each processor
factorizes a block of length kw of S with
the resulting factorization of the string
approximating the sequential one with a
multiplicative factor converging to 1 when
k grows.
multiplicative factor converging to 1 when
k grows.

Proc. 1 2 3 4 5 6 7 etc.

Robustness

LZ1 factorization applied to the blocks has
the same compression effectivennes of
sequential LZ1 factorization for k ≥ 10.

Since the window length for the the Zip
compressors is at least 32kB, the block
length should be about 300kB to
guarantee robustness.

Scalability

The implementation of a Zip compressor
on a large scale distributed system, with
no interprocessor communication during
the computational phase, is feasible only
on large size files (a size about one thirdon large size files (a size about one third
of the number of processors in
megabytes).

De Agostino [LSD&LAW09]

Cinque, De Agostino & Lombardi [MCS10]

LZ2 Factorization

A finite alphabet, S in A*.

LZ2 factorization: S = f1f2… fi…fm where fi
is the shortest substring which is different
from all the previous factors if i < mfrom all the previous factors if i < m
(differently from LZ1, fi depends on the
previous factors).

The LZW compressor slightly changes the
factorization in order not to leave
characters uncompressed.

Example

Input String

aabbaabbbabbaab

LZ2 FactorizationLZ2 Factorization

a, ab, b, aa, bb, ba, bba, ab

Coding

0a 1b 0b 1a 3b 3a 5a 1b

LZW Factorization and Compression

Finite alphabet A with |A| = α, dictionary D
initially set to A with a given order, S in A*.

LZW factorization: S = f1f2… fi…fm where fi
is the longest match with theis the longest match with the
concatenation of a previous factor and the
next character.

LZW compression is obtained by encoding
fi with a pointer to a copy of such
concatenation, called target, previously
added to D.

Example

Input String

aabbaabbbabbaab

LZW Factorization

a, a, b, b, aa, bb, ba, bb, aaba, a, b, b, aa, bb, ba, bb, aab

Dictionary (initially, equal to A)

a, b, aa, ab, bb, ba, aab, bbb, bab, bba

Coding

1 1 2 2 3 5 6 5 7

Observation

Q = q1q2… qi…qm is the sequence of
pointers encoding the input string S.

For 1 < i ≤ m, the target of the pointer q isFor 1 < i ≤ m, the target of the pointer qi is
the concatenation of the target of the
pointer in position qi - α with the first
character of the target of the pointer in
position qi - α + 1, if qi > α.

Parallel Complexity

While Zip and Unzip are in NC (the class
of problems solvable in polylog time and a
polynomial number of processors), LZW is
ineherently sequential (P-complete).

De Agostino [TCS94]

The P-completeness depends only on the
factorization process.

The LZW decompressor is parallelizable
(asymmetry of the LZW encoder/decoder).

Bounded Memory LZW Factorizations

LZW-FREEZE: fi is the longest match with
one of the first d factors (d=216).

LZW-RESTART: fi is determined by the
last (i mod d) factors.last (i mod d) factors.

Standard LZW: RESTART happens when
the compression ratio deteriorates.

LZW-LRU: for each fi , with i>d, the least
recently used (matched) factor is not
considered in the next factorization steps.

Parallel Complexity Issues

Sequential FREEZE, RESTART and LRU
are parallelizable in theory.

FREEZE is somewhat practical.

RESTART is pseudo-polylog.

Standard LZW is quadratic in the number
of processors.

LRU involves huge constant values in its
parallel complexity.

The Complexity of LRU

SCk is the class of problems solvable
simultaneously in polynomial time and
O(logk n) space.

If d is O(logk|S|), LRU belongs to SCk+1 butIf d is O(log |S|), LRU belongs to SC but
it is hard for SCk.

If d is constant, LRU belongs to NC but its
parallel complexity involves huge values.

De Agostino and Silvestri [IC2003]

Relaxing LRU (RLRU)

RLRUp partitions the dictionary into p
classes sorted according to the order of
insertion of factors.

An arbitrary factor from the oldest class isAn arbitrary factor from the oldest class is
deleted at each factorization step.

LZW-RLRU2 is the most efficient Lempel-
Ziv compression method (expecially, for
highly disseminated heterogeneous data).

LZW and Distributed Computing

As Zip, LZW compression can be applied
independently to different blocks of the
input string, in parallel.

A block of 600kB garantees robustnessA block of 600kB garantees robustness
(about 300kB to learn a 64K dictionary and
about 300kB to compress staticly in order
to approximate adaptive RESTART).

Static compression is extremely scalable.

De Agostino [ADVCOMP2014]

Compressing Gigabytes

No static compression is involved with
LRU and RLRU.

Parallel processing of at least 600kB
blocks is scalable only with large size files.blocks is scalable only with large size files.

In such case, LZW-RLRU2 compression
guarantees robustness, scalability and a
linear speed-up

Standard LZW Compression

Let Q = Q1 … Qi … QM be the standard
LZW encoding of a string S, with Qi

sequence of pointers between two “clear”
operations for 1 ≤ i ≤ M.operations for 1 ≤ i ≤ M.

Each Qi can be decoded independently.

The decoding of Qi can be parallelized in
order to obtain scalability.

Standard LZW Decoding on the PRAM

q1q2… qi…qm is a sequence of pointers
encoding a substring S’ between two
consecutive “clear” operations.

For 1 < i ≤ m, the target of the pointer qi is
the concatenation of the target of the
pointer in position qi - α with the first
character of the target of the pointer in
position qi - α + 1, if qi > α, as for the
unbounded version.

Applying Pointer Jumping

Consider q1q2… qi…qm as a parent array
where:

- if qi ≤ α, then position i is a rooti

- if qi > α, then the parent of i is qi - α

Compute the paths from each node
(pointer) to its root (pointer representing
an alphabet character).

Parallel Complexity

The maximum target (factor) length L is an
upper bound to the height of each tree.

By applying pointer jumping to P, weBy applying pointer jumping to P, we
compute the path from each node to its
root in O(log L) time with O(n) processors
on a CREW PRAM, with n = |S’ |  O(mL).

One more step is required to decompress.

Example

output to compute: aabbaabbbabbaab

factorization: a, a, b, b, aa, bb, ba, bb, aab

step 0: 1 1 2 2 3 5 6 5 7

step 1: 1 1 2 2 3 5 6 5 7step 1: 1 1 2 2 3 5 6 5 7

1 2 2 2 3

step 3: 1 1 2 2 3 5 6 5 7

1 2 2 2 3

1

Last Step

The target of qi is computed as follows:

the first character is given by the last
pointer written on column i

the other characters are given by looking at
the last pointers on the columns, whosethe last pointers on the columns, whose
index is equal to one of the other pointers
on column i decreased by α – 1

such characters are concatenated
according to the bottom-up order of the
pointers on column i

Work-Optimal Complexity

L equals the dictionary size d when the
string to compress is unary.

If d = 216, 16 is the theoretical upper
bound to the number of iterations.bound to the number of iterations.

In practice, 10 < L < 20, that is, log L < 5.

Ten units are, definitely, a conservative
upper bound to the number of global
computation steps (each step takes O(L)
time if we use only m processors).

The MapReduce Framework

MapReduce (MR) is a framework for
processing parallelizable problems across
huge datasets using a large number of
processors.

Processors could be either on the same
local network or shared across
geographically and administratively more
heterogenous distributed systems.

The MR Programming Paradigm

P = μ1ρ1 …. μRρR is a sequence where μi is
a mapper and ρi is a reducer for 1 ≤ i ≤ R.

Mappers broadcast data among the
processors.processors.

Reducers execute the computational
steps.

The communication cost is determined by
the mappers.

Complexity Requirements

- R is polylogarithmic in the input size

- sub-linear number of processors

- sub-linear work-space for each processor

- mappers running time is polynomial

- reducers running time is polynomial

Karloff, Suri and Vassilvistkii, A Model of
Computation for MapReduce, SODA 2010

MapReduce and CREW PRAM

A CREW PRAM O(t) time algorithm using
a sub-quadratic number of processors and
sub-quadratic global work-space can be
implemented in MapReduce in O(t)

iterations (that is, R  O(t)), satisfying
every requirement previously mentioned if
t is polylogarithmic.

Karloff, Suri and Vassilvistkii, A Model of
Computation for MapReduce, SODA 2010

MapReduce and LZW Decompression

Q = Q1 … Qi … QM with Qi sequence of
pointers between two “clear” operations
and m = max { |Qi | }, for 1 ≤ i ≤ M.

The input phase broadcasts the j-thThe input phase broadcasts the j-th
pointer of Qi to processor j, for 1 ≤ j ≤ m
and 1 ≤ i ≤ M.

The sub-linearity requirements are
satisfied since m and M are generally sub-
linear in practice.

Stronger Requirements

R is constant (< 10).

Time of a MapReduce operation X the
number of processors is O(T), with T
sequential time (optimality requirement).sequential time (optimality requirement).

The LZW parallel decoder satisfies these
stronger requirements.

Paper in preparation

to be submitted

Conclusion

Parallel decompressors are more
important than parallel compressors and,
generally, have a lower complexity.

In highly distributed implementations,In highly distributed implementations,
scalability requirements imply a lack of
robustness for arbitrary files.

LZW compression has an advantage over
Zip since the sequential decoder is highly
parallelizable.

