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 Two aims:

1. Prevent bugs from being introduced into code

2. Discover those un-prevented bugs

• What is a bug?

Software Testing

Software Testing
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• What is a bug?

• What are its symptoms?

• What is an infection?

• How it is cured?
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 Misunderstand a specification

 Underestimate the complexity of the software

 Inadvertently press the wrong key

What is a bug?

What is a bug?
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Faults
(physical mistakes in the design or the implementation of the code)

Commonly referred to as

Bugs
Especially in the context of code development



Mutation Testing: Development and Challenges

 Software failure

 Observable event

 The software execution differs from its specification

What are the symptoms of a bug?

What are the symptoms of a bug?
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 The software execution differs from its specification

 The failure observed is a symptom of a bug

 Trivial annoyance (The defect does not affect
functionality or data)

 Drastic such as the loss of a human life
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 In biology, an infection is due to the presence of a bug
in the body that may or may not cause symptoms to
be expressed

What is an infection?

What is an infection?
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 Similarly, an infection in code refers to software that
has at least one fault that may or may not express
symptoms when executed.

 Simply, the code is infected with a bug
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Two stages process:
1. Bug identification
 Primarily achieved by executing tests on a program in

an attempt to reveal symptoms of a bug

How is an infection cured?

How is an infection cured?
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an attempt to reveal symptoms of a bug
 If symptoms are expressed, then the test has caused the

program to execute differently from its specification and
so has provided useful information in identifying a fault

2. Bug correction
 Simple change to source code (wrong variable name or

incorrect relational operator)
 More fundamental changes that require the rewriting of

numerous lines of code
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 How does a tester distinguish between a poor test that is
incapable of displaying a fault’s symptoms, and a good test
when there are no faults to find?

Poor vs. Good Test?

Poor vs. Good Test?
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Test Set Adequacy
(as a means to of measuring how good a test set is at testing a program)

 Adequacy criteria (indication of program coverage)

 Statement coverage criterion

 Decision testing (exercising all true and false paths)

 Increase the number of tests in order to improve our
confidence in the system
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 Adequacy criteria do not focus on the causes of a program's
failures

Mutation Testing

Mutation Testing

Mutation Testing Does
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Mutation Testing Does

 This criteria generates versions of the program containing
simple faults and then finds tests to indicate their symptoms

 If an adequate test set can be found that reveals the symptoms
in all the faulty versions, then one's confidence that the
program is correct increases.
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 Error guessing
 Assess the situation and guess where and what kinds of faults might exist
 Design tests to specifically expose those kinds of faults

 Fault seeding
 known faults are injected into a program, and the test suite is executed to

assess the effectiveness of the test suite

Fault-based Testing

Fault-based Testing
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assess the effectiveness of the test suite
 An oracle is available to assert that the inserted fault indeed made the

program incorrect
 Makes an assumption that a test suite that finds seeded faults is also likely

to find other faults

 Mutation analysis
 Mutations to program statements are made in order to determine the fault

detection capability of the test suite
 Fault simulation, a program modification is not guaranteed to lead to a

faulty program
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 A mutant is produced by introducing small changes into the
software artifact (source code or specification UT)

Mutation Testing

Mutation Testing
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 A mutation operator is a set of instructions for generating
mutants of a particular type

 Ideally the test suite should contain a test that distinguishes
the behaviors of the mutant and the original artifact

 Expose and locate weaknesses in test cases
 Mutation testing is not a testing strategy like control flow or

data flow testing
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We can perform mutation analysis whenever we:

 use well defined rules,

 defined on syntactic descriptions,

 to make systematic changes,

Mutation Analysis

Mutation Analysis
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 to make systematic changes,

 to the syntax or to objects developed from the
syntax
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Mutation Testing Process

Mutation Testing Process

Source
Code/Spec

Create
Mutants

Fix errors

Traditional Test
Generation Techniques
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Mutant 1
Mutant 1

Mutant 1

Test Suite New Test Data

Living
Mutants

Mutants

Test Mutants

For the same input
Output(M’) ≠ Output (M)

Killed
Mutants

Not Equivalent
to Original

Equivalent to
Original
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• Initial test data set:

TC1: Input: M=1, N=2; Expected output: 2

• Five mutants: replace”>“ operator in if
statements by (>,<,<=or=)

Example of Mutation Testing

Example of Mutation Testing

int function MAX(M:int, N:int)
{
if M>N then

return M;
else

return N;
}
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Adding a new test case M=2, N=1 will eliminate the latter live mutant,
but the former live mutant remains live because it is equivalent to the
original function. No test data can eliminate it.

}

Equivalent to
the original
program
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Mutation Score

Mutation Score
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 High computational cost of executing the huge number
of mutants against a test set

 Automatically detecting equivalent mutants is
undecidable, because program equivalence is

Mutation Testing Problems

Mutation Testing Problems

15

undecidable, because program equivalence is
undecidable.

 The human oracle problem
 Refers to the process of checking the original program’s output

with each test case.

 This is not a problem unique to Mutation Testing
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 Originally proposed by Dick Lipton in 1971

 Article by DeMillo (Georgia Tech), Lipton (Princeton),
and Sayward (Yale) (1978) is generally cited as the
seminal reference

Mutation Testing – 1970s

Mutation Testing – 1970s
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seminal reference

 Fundamental Hypotheses (DeMillo et al., 1978):
 The Competent Programmer Hypothesis states that

competent programmers tend to write programs that are
close to being correct

 The Coupling Effect states that a test data set that catches
all simple faults in a program is so sensitive that it will also
catch more complex faults
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 MOTHRA Project (1987)
 Demonstrate the practical feasibility of mutation

 DeMillo et al. “An Overview of the Mothra Software
Testing Environment,” Technical Report, Purdue University,

Mutation Testing – 1980s

Mutation Testing – 1980s
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Testing Environment,” Technical Report, Purdue University,
1987

 First set of Mutation Operators (22 FORTRAN Mutation
Operators)

 First widely used working mutation system

 Source code written in C (> 100KLOC)

 Many papers and PhD theses (Offutt 1988, Agrawal 1990,
Krauser 1991, Wong 1993) during and after the project



Mutation Testing: Development and Challenges

 Program Unit Testing
 Mutation Operators (First order mutants)

 Traditional programming languages
 Ada

Mutation Testing – 1990s

Mutation Testing - 1990
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 Ada

 C

 Lisp

 Interface Mutation
 Mutating function calls

 Integration testing

 Specification Mutation
 Mutating Formal specifications (SMV, Z)
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 Many new tools
 Academic (MOTHRA, PROTEUM, MUJAVA, etc.)
 Open source (JESTER, HECKLE, etc.)
 Commercial

 INSURE++
 Certitude by Certess tests integrated circuit designs in VHDL or Verilog

Mutation Testing – 2000-Present

Mutation Testing – 2000-Present
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 Certitude by Certess tests integrated circuit designs in VHDL or Verilog
 PlexTest by ITRegister tests C++

 Other software artifacts and models
 FSM
 XML
 SQL
 HTML
 AspectJ programs
 Security Policies
 Web Services

And More to Come…
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Research in Mutation Testing

Research in Mutation Testing

Defining Mutation Operators
Developing Mutation

Systems
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Reduce the Cost of Mutation
Analysis

Experimentation with
Mutation

Research in
Mutation Testing
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 Mutation operators are classified by the language
constructs they are created to alter (e.g. method-level,
class-level, etc.)

 At the method level, mutation operators for different
programming languages are similar

Designing Mutation Operators

Designing Mutation Operators
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programming languages are similar

 Researchers design lots of operators, then
experimentally select the most useful

 Empirical data about the behavior of the mutants
produced by a given mutation operator can help us
understand the utility of the operator in a given context
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Reduce the Cost of Mutation Analysis

Reduce the Cost of Mutation Testing

 M set of mutants, T a set of test data T, MST (M) denotes the
mutation score of the test set T applied to mutants M

 The mutant reduction problem can be defined as the problem of
finding a subset mutants M' from M, where MST (M') ≈ MST (M).
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 Reduce the number of generated mutants without significant loss
of test effectiveness

 Reduction Techniques:
 Mutant Sampling
 Mutant Clustering
 Selective Mutation
 Higher order Mutation
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Mutant Sampling

Mutation Reduction Techniques

 All possible mutants are generated first as in traditional
Mutation Testing

 Randomly chooses a small subset of mutants from the
entire set M and the remaining mutants are discarded

Mutation Sampling
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entire set M and the remaining mutants are discarded

 Random selection rate (x%)

 Wong and Mathur’s studies (1993) have used selection
rate x from 10% to 40% in steps of 5%.
 The results suggested that random selection of 10% of

mutants is only 16% less effective than a full set of
mutants in terms of mutation score
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Mutant Clustering

Mutation Reduction Techniques

 Mutant Clustering chooses a subset of mutants using
clustering algorithms
 Generation of all first order mutants
 A clustering algorithm is then applied to classify the mutants

into different clusters based on the killable test cases
 Each mutant in the same cluster is guaranteed to be killed by a

Mutation Clustering
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 Each mutant in the same cluster is guaranteed to be killed by a
similar set of test cases

 Only a small number of mutants are selected from each cluster
to be used in Mutation Testing, the remaining mutants are
discarded

 Hussain’s experiment (2008) applied two clustering
algorithms, K-means and Agglomerative clustering

 Empirical results suggest that Mutant Clustering is able to
select fewer mutants but still maintain the mutation score
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Selective Mutation

Mutation Reduction Techniques

 Reducing the number of applied mutation operators
 Find a small set of mutation operators that generate a

subset of all possible mutants without significant loss of
test effectiveness

Selective Mutation
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 Operators generate different numbers of mutants
 Some operators generate far more mutants than others,

many of which may turn out to be redundant
 For example, two mutation operators of the 22 Mothra

operators, ASR (Assignment Operator Replacement) and
SVR (Scalar Variable Replacement), were reported to
generate approximately 40% to 60% of all mutants (king
and Offut, 1991)
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Selective Mutation

Mutation Reduction Techniques

 Omitting two mutation operators is called “2-selective
mutation”
 Achieved a mean mutation score of 99.99% with a 24% reduction in

the number of mutants (Offut et al. 1993)
 4-selection/6-selection mutation

Selective Mutation
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 Categorize the operators then select operators from each
Category

 Apply linear statistical approaches to identify a subset of 28
mutation operators from 108 C mutation operators (Naim et
al. 2008)
 The 28 operators are sufficient to predict the effectiveness of a

test suite, and it reduced 92% of all generated mutants
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Higher Order Mutation (HOM)

Mutation Reduction Techniques

 Higher Order Mutants are generated by applying mutation
operators more than once
 Second order mutant (apply the operator twice)

 HOM mutants are harder to kill compared with First Order

Higher Order Mutation
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 HOM mutants are harder to kill compared with First Order
Mutants

 One HOM test case would kill FOM separately and in
combination
 Human oracle needs only to check one test output
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Execution Cost Reduction Techniques

Execution Cost Reduction Techniques

 Based on the way in which we decide how a mutant
is killed during the execution process

 Mutation Testing techniques can be classified into three
types:
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types:

– Strong Mutation

– Weak Mutation

– Firm Mutation.

 Runtime Optimization techniques

 Reduction of the compilation cost

 Advanced Platforms Support for Mutation Testing



Mutation Testing: Development and Challenges

Strong/Weak/Firm Mutation

Execution Cost Reduction Techniques

 Strong Mutation: the mutant is killed when it produces a
different output from the original program

 Weak Mutation: instead of checking after the execution of

Strong, Weak, Firm Mutation
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 Weak Mutation: instead of checking after the execution of
the entire program, the mutants only need to be checked
immediately after the execution point of the mutated
statement/component

 Firm Mutation: The ‘compare state’ lies between the
intermediate states after execution (Weak Mutation) and
the final output (Strong Mutation)
 To date no publicly available firm mutation tool
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Runtime Optimization Technique

Execution Cost Reduction Techniques

 Reduction of the compilation cost:

 Bytecode Translation technique (Java)

 Mutants are generated from the compiled object
code of the original program, instead of the source

Runtime Optimization Technique
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code of the original program, instead of the source
code

 The generated ‘bytecode mutants’ can be executed
directly without compilation

 Not all programming languages provide an easy way
to manipulate intermediate object code
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Advanced Platforms Support for Mutation Testing

Execution Cost Reduction Techniques

 Parallel mutation testing

 Distribute the overall computational cost among many
processors

 Concurrent execution mutants under SIMD machines

Advanced Platform Support for Mutation Testing
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 Concurrent execution mutants under SIMD machines
(Krauser et al. 1991)

 Distributed the execution cost of Mutation Testing
through MIMD machines (Offut et al. 1992)
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Reduce the Cost of Mutation Analysis

Reduce the Cost of Mutation Analysis

Weak

Percentage of publications on Reduction Techniques
(Jia and Harman, 2011)
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Selective
Mutation

33%

Interpreter
3%

MIMD
3% Mutant

Schemata
6%

Compiler
6%

Parallel
6%

SIMD
6%

Firm Mutation
6%

Higher Order
Mutation

6%

Weak
Mutation

25%
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 High quality higher order mutants

 Need to reduce the equivalent mutant problem

Future Trend in Mutation Testing

Future Trend in Mutation Testing
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 A preference for semantics over syntax. More
realistic mutants that resemble real faults

 Achieving a better balance between cost and value

 Generation of test cases to kill mutants
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