
Mutation Testing: Development and Challenges

Keynote - Lisbon, Nov 20th, 2012

Mutation Testing:
Development and Challenges

7th International Conference on Software Engineering Advances (ICSEA 2012)

1

Development and Challenges

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, KSA
jhassine@kfupm.edu.sa



Mutation Testing: Development and Challenges

 Two aims:

1. Prevent bugs from being introduced into code

2. Discover those un-prevented bugs

• What is a bug?

Software Testing

Software Testing

2

• What is a bug?

• What are its symptoms?

• What is an infection?

• How it is cured?



Mutation Testing: Development and Challenges

 Misunderstand a specification

 Underestimate the complexity of the software

 Inadvertently press the wrong key

What is a bug?

What is a bug?

3

Faults
(physical mistakes in the design or the implementation of the code)

Commonly referred to as

Bugs
Especially in the context of code development



Mutation Testing: Development and Challenges

 Software failure

 Observable event

 The software execution differs from its specification

What are the symptoms of a bug?

What are the symptoms of a bug?

4

 The software execution differs from its specification

 The failure observed is a symptom of a bug

 Trivial annoyance (The defect does not affect
functionality or data)

 Drastic such as the loss of a human life



Mutation Testing: Development and Challenges

 In biology, an infection is due to the presence of a bug
in the body that may or may not cause symptoms to
be expressed

What is an infection?

What is an infection?

5

 Similarly, an infection in code refers to software that
has at least one fault that may or may not express
symptoms when executed.

 Simply, the code is infected with a bug



Mutation Testing: Development and Challenges

Two stages process:
1. Bug identification
 Primarily achieved by executing tests on a program in

an attempt to reveal symptoms of a bug

How is an infection cured?

How is an infection cured?

6

an attempt to reveal symptoms of a bug
 If symptoms are expressed, then the test has caused the

program to execute differently from its specification and
so has provided useful information in identifying a fault

2. Bug correction
 Simple change to source code (wrong variable name or

incorrect relational operator)
 More fundamental changes that require the rewriting of

numerous lines of code



Mutation Testing: Development and Challenges

 How does a tester distinguish between a poor test that is
incapable of displaying a fault’s symptoms, and a good test
when there are no faults to find?

Poor vs. Good Test?

Poor vs. Good Test?

7

Test Set Adequacy
(as a means to of measuring how good a test set is at testing a program)

 Adequacy criteria (indication of program coverage)

 Statement coverage criterion

 Decision testing (exercising all true and false paths)

 Increase the number of tests in order to improve our
confidence in the system



Mutation Testing: Development and Challenges

 Adequacy criteria do not focus on the causes of a program's
failures

Mutation Testing

Mutation Testing

Mutation Testing Does

8

Mutation Testing Does

 This criteria generates versions of the program containing
simple faults and then finds tests to indicate their symptoms

 If an adequate test set can be found that reveals the symptoms
in all the faulty versions, then one's confidence that the
program is correct increases.



Mutation Testing: Development and Challenges

 Error guessing
 Assess the situation and guess where and what kinds of faults might exist
 Design tests to specifically expose those kinds of faults

 Fault seeding
 known faults are injected into a program, and the test suite is executed to

assess the effectiveness of the test suite

Fault-based Testing

Fault-based Testing

9

assess the effectiveness of the test suite
 An oracle is available to assert that the inserted fault indeed made the

program incorrect
 Makes an assumption that a test suite that finds seeded faults is also likely

to find other faults

 Mutation analysis
 Mutations to program statements are made in order to determine the fault

detection capability of the test suite
 Fault simulation, a program modification is not guaranteed to lead to a

faulty program



Mutation Testing: Development and Challenges

 A mutant is produced by introducing small changes into the
software artifact (source code or specification UT)

Mutation Testing

Mutation Testing

10

 A mutation operator is a set of instructions for generating
mutants of a particular type

 Ideally the test suite should contain a test that distinguishes
the behaviors of the mutant and the original artifact

 Expose and locate weaknesses in test cases
 Mutation testing is not a testing strategy like control flow or

data flow testing



Mutation Testing: Development and Challenges

We can perform mutation analysis whenever we:

 use well defined rules,

 defined on syntactic descriptions,

 to make systematic changes,

Mutation Analysis

Mutation Analysis

11

 to make systematic changes,

 to the syntax or to objects developed from the
syntax



Mutation Testing: Development and Challenges

Mutation Testing Process

Mutation Testing Process

Source
Code/Spec

Create
Mutants

Fix errors

Traditional Test
Generation Techniques

12

Mutant 1
Mutant 1

Mutant 1

Test Suite New Test Data

Living
Mutants

Mutants

Test Mutants

For the same input
Output(M’) ≠ Output (M)

Killed
Mutants

Not Equivalent
to Original

Equivalent to
Original



Mutation Testing: Development and Challenges

• Initial test data set:

TC1: Input: M=1, N=2; Expected output: 2

• Five mutants: replace”>“ operator in if
statements by (>,<,<=or=)

Example of Mutation Testing

Example of Mutation Testing

int function MAX(M:int, N:int)
{
if M>N then

return M;
else

return N;
}

13

Adding a new test case M=2, N=1 will eliminate the latter live mutant,
but the former live mutant remains live because it is equivalent to the
original function. No test data can eliminate it.

}

Equivalent to
the original
program



Mutation Testing: Development and Challenges

Mutation Score

Mutation Score

14



Mutation Testing: Development and Challenges

 High computational cost of executing the huge number
of mutants against a test set

 Automatically detecting equivalent mutants is
undecidable, because program equivalence is

Mutation Testing Problems

Mutation Testing Problems

15

undecidable, because program equivalence is
undecidable.

 The human oracle problem
 Refers to the process of checking the original program’s output

with each test case.

 This is not a problem unique to Mutation Testing



Mutation Testing: Development and Challenges

 Originally proposed by Dick Lipton in 1971

 Article by DeMillo (Georgia Tech), Lipton (Princeton),
and Sayward (Yale) (1978) is generally cited as the
seminal reference

Mutation Testing – 1970s

Mutation Testing – 1970s

16

seminal reference

 Fundamental Hypotheses (DeMillo et al., 1978):
 The Competent Programmer Hypothesis states that

competent programmers tend to write programs that are
close to being correct

 The Coupling Effect states that a test data set that catches
all simple faults in a program is so sensitive that it will also
catch more complex faults



Mutation Testing: Development and Challenges

 MOTHRA Project (1987)
 Demonstrate the practical feasibility of mutation

 DeMillo et al. “An Overview of the Mothra Software
Testing Environment,” Technical Report, Purdue University,

Mutation Testing – 1980s

Mutation Testing – 1980s

17

Testing Environment,” Technical Report, Purdue University,
1987

 First set of Mutation Operators (22 FORTRAN Mutation
Operators)

 First widely used working mutation system

 Source code written in C (> 100KLOC)

 Many papers and PhD theses (Offutt 1988, Agrawal 1990,
Krauser 1991, Wong 1993) during and after the project



Mutation Testing: Development and Challenges

 Program Unit Testing
 Mutation Operators (First order mutants)

 Traditional programming languages
 Ada

Mutation Testing – 1990s

Mutation Testing - 1990

18

 Ada

 C

 Lisp

 Interface Mutation
 Mutating function calls

 Integration testing

 Specification Mutation
 Mutating Formal specifications (SMV, Z)



Mutation Testing: Development and Challenges

 Many new tools
 Academic (MOTHRA, PROTEUM, MUJAVA, etc.)
 Open source (JESTER, HECKLE, etc.)
 Commercial

 INSURE++
 Certitude by Certess tests integrated circuit designs in VHDL or Verilog

Mutation Testing – 2000-Present

Mutation Testing – 2000-Present

19

 Certitude by Certess tests integrated circuit designs in VHDL or Verilog
 PlexTest by ITRegister tests C++

 Other software artifacts and models
 FSM
 XML
 SQL
 HTML
 AspectJ programs
 Security Policies
 Web Services

And More to Come…



Mutation Testing: Development and Challenges

Research in Mutation Testing

Research in Mutation Testing

Defining Mutation Operators
Developing Mutation

Systems

20

Reduce the Cost of Mutation
Analysis

Experimentation with
Mutation

Research in
Mutation Testing



Mutation Testing: Development and Challenges

 Mutation operators are classified by the language
constructs they are created to alter (e.g. method-level,
class-level, etc.)

 At the method level, mutation operators for different
programming languages are similar

Designing Mutation Operators

Designing Mutation Operators

21

programming languages are similar

 Researchers design lots of operators, then
experimentally select the most useful

 Empirical data about the behavior of the mutants
produced by a given mutation operator can help us
understand the utility of the operator in a given context



Mutation Testing: Development and Challenges

Reduce the Cost of Mutation Analysis

Reduce the Cost of Mutation Testing

 M set of mutants, T a set of test data T, MST (M) denotes the
mutation score of the test set T applied to mutants M

 The mutant reduction problem can be defined as the problem of
finding a subset mutants M' from M, where MST (M') ≈ MST (M).

22

 Reduce the number of generated mutants without significant loss
of test effectiveness

 Reduction Techniques:
 Mutant Sampling
 Mutant Clustering
 Selective Mutation
 Higher order Mutation



Mutation Testing: Development and Challenges

Mutant Sampling

Mutation Reduction Techniques

 All possible mutants are generated first as in traditional
Mutation Testing

 Randomly chooses a small subset of mutants from the
entire set M and the remaining mutants are discarded

Mutation Sampling

23

entire set M and the remaining mutants are discarded

 Random selection rate (x%)

 Wong and Mathur’s studies (1993) have used selection
rate x from 10% to 40% in steps of 5%.
 The results suggested that random selection of 10% of

mutants is only 16% less effective than a full set of
mutants in terms of mutation score



Mutation Testing: Development and Challenges

Mutant Clustering

Mutation Reduction Techniques

 Mutant Clustering chooses a subset of mutants using
clustering algorithms
 Generation of all first order mutants
 A clustering algorithm is then applied to classify the mutants

into different clusters based on the killable test cases
 Each mutant in the same cluster is guaranteed to be killed by a

Mutation Clustering

24

 Each mutant in the same cluster is guaranteed to be killed by a
similar set of test cases

 Only a small number of mutants are selected from each cluster
to be used in Mutation Testing, the remaining mutants are
discarded

 Hussain’s experiment (2008) applied two clustering
algorithms, K-means and Agglomerative clustering

 Empirical results suggest that Mutant Clustering is able to
select fewer mutants but still maintain the mutation score



Mutation Testing: Development and Challenges

Selective Mutation

Mutation Reduction Techniques

 Reducing the number of applied mutation operators
 Find a small set of mutation operators that generate a

subset of all possible mutants without significant loss of
test effectiveness

Selective Mutation

25

 Operators generate different numbers of mutants
 Some operators generate far more mutants than others,

many of which may turn out to be redundant
 For example, two mutation operators of the 22 Mothra

operators, ASR (Assignment Operator Replacement) and
SVR (Scalar Variable Replacement), were reported to
generate approximately 40% to 60% of all mutants (king
and Offut, 1991)



Mutation Testing: Development and Challenges

Selective Mutation

Mutation Reduction Techniques

 Omitting two mutation operators is called “2-selective
mutation”
 Achieved a mean mutation score of 99.99% with a 24% reduction in

the number of mutants (Offut et al. 1993)
 4-selection/6-selection mutation

Selective Mutation

26

 Categorize the operators then select operators from each
Category

 Apply linear statistical approaches to identify a subset of 28
mutation operators from 108 C mutation operators (Naim et
al. 2008)
 The 28 operators are sufficient to predict the effectiveness of a

test suite, and it reduced 92% of all generated mutants



Mutation Testing: Development and Challenges

Higher Order Mutation (HOM)

Mutation Reduction Techniques

 Higher Order Mutants are generated by applying mutation
operators more than once
 Second order mutant (apply the operator twice)

 HOM mutants are harder to kill compared with First Order

Higher Order Mutation

27

 HOM mutants are harder to kill compared with First Order
Mutants

 One HOM test case would kill FOM separately and in
combination
 Human oracle needs only to check one test output



Mutation Testing: Development and Challenges

Execution Cost Reduction Techniques

Execution Cost Reduction Techniques

 Based on the way in which we decide how a mutant
is killed during the execution process

 Mutation Testing techniques can be classified into three
types:

28

types:

– Strong Mutation

– Weak Mutation

– Firm Mutation.

 Runtime Optimization techniques

 Reduction of the compilation cost

 Advanced Platforms Support for Mutation Testing



Mutation Testing: Development and Challenges

Strong/Weak/Firm Mutation

Execution Cost Reduction Techniques

 Strong Mutation: the mutant is killed when it produces a
different output from the original program

 Weak Mutation: instead of checking after the execution of

Strong, Weak, Firm Mutation

29

 Weak Mutation: instead of checking after the execution of
the entire program, the mutants only need to be checked
immediately after the execution point of the mutated
statement/component

 Firm Mutation: The ‘compare state’ lies between the
intermediate states after execution (Weak Mutation) and
the final output (Strong Mutation)
 To date no publicly available firm mutation tool



Mutation Testing: Development and Challenges

Runtime Optimization Technique

Execution Cost Reduction Techniques

 Reduction of the compilation cost:

 Bytecode Translation technique (Java)

 Mutants are generated from the compiled object
code of the original program, instead of the source

Runtime Optimization Technique

30

code of the original program, instead of the source
code

 The generated ‘bytecode mutants’ can be executed
directly without compilation

 Not all programming languages provide an easy way
to manipulate intermediate object code



Mutation Testing: Development and Challenges

Advanced Platforms Support for Mutation Testing

Execution Cost Reduction Techniques

 Parallel mutation testing

 Distribute the overall computational cost among many
processors

 Concurrent execution mutants under SIMD machines

Advanced Platform Support for Mutation Testing

31

 Concurrent execution mutants under SIMD machines
(Krauser et al. 1991)

 Distributed the execution cost of Mutation Testing
through MIMD machines (Offut et al. 1992)



Mutation Testing: Development and Challenges

Reduce the Cost of Mutation Analysis

Reduce the Cost of Mutation Analysis

Weak

Percentage of publications on Reduction Techniques
(Jia and Harman, 2011)

32

Selective
Mutation

33%

Interpreter
3%

MIMD
3% Mutant

Schemata
6%

Compiler
6%

Parallel
6%

SIMD
6%

Firm Mutation
6%

Higher Order
Mutation

6%

Weak
Mutation

25%



Mutation Testing: Development and Challenges

 High quality higher order mutants

 Need to reduce the equivalent mutant problem

Future Trend in Mutation Testing

Future Trend in Mutation Testing

33

 A preference for semantics over syntax. More
realistic mutants that resemble real faults

 Achieving a better balance between cost and value

 Generation of test cases to kill mutants



Mutation Testing: Development and Challenges

34


