

Carrier and Spin Injection in ZnMnSe/CdSe Nanostructures

 D. Dagnelund, I.A. Buyanova , T. Furuta¹, K. Hyomi¹, I. Souma¹, A. Murayama¹, and W.M. Chen
Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
¹Institute of multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

Introduction and Motivation: Spintronics

Spin-dependent electronics (Spintronics):

utilizes spin to sense, store and process information

≻Applications:

- Information storage
- Information processing
- Communications

Advantages: high density, high speed, low power, new functionality

Introduction and Motivation:

Semiconductor spintronics

- Spin alignment
- Spin injection
- Spin manipulation
- Spin detection

Spin detector

> Desired spin injectors and detectors:

- Compatible with the rest of spintronic devices
- Efficient spin injection and detection (or readout)

Introduction and Motivation: Semiconductor spintronics

> Suitable spin injectors: Dilute magnetic semiconductors (DMS)

- II-Mn-VI based DMS, e.g. (Zn,Cd,Mn)(Se,Te)
 - Advantage: Mature growth techniques, good understanding of magnetism
 - Disadvantage: Magnetic at low temperatures
- (Ga,In,Mn)As based DMS
 - Advantage: Improved knowledge, existing (Ga,In)As-based devices
 - > Disadvantage: Ferromagnetic only at low temperatures
- DMS based nitrides and oxides
 - Advantage: Ferromagnetic at room temperature
 - > Disadvantage: Poor material quality, poor understanding of magnetism
- > Compatible spin detectors: Nonmagnetic semiconductors
 - (Zn,Cd)(Se,Te)
 - (In,Ga)As
 - (In,Ga)N, (Zn,Cd)O

Introduction and Motivation: Limited spin injection efficiency - Problems

Why Limited spin injection efficiency ?

Spin

detector

- Incomplete spin alignment in DMS ?
- > Spin scattering during spin injection ?
- Spin depolarization in spin detector ?

Semiconductor quantum dots as a spin detector by taking advantage of slower spin relaxation ?

Growth method:

- Molecular beam epitaxy
- **Spin Injector:**
 - Zn_{0.93}Mn_{0.07}Se
- **Spin Detector:**
 - Self-assembled CdSe QD's
- **Substrate:**
 - (100) GaAs

Excitation of Polarized PL

DMS, B≠0

Wavelength (nm)

- **PL excitation (PLE) spectra of QD:**
 - DMS peak
 - Carrier injection from DMS to QD
- **Below DMS excitation:**
 - $P^{int} = (\sigma + \sigma)/(\sigma + \sigma) < 0$
 - Intrinsic properties of QD's
 - **Resonant DMS excitation:**
 - $P=(\sigma^+-\sigma^-)/(\sigma^++\sigma^-) \nearrow \Delta P=P-P^{int}>0$
 - Spin injection from DMS

Carrier and spin injection: Dependence on barrier thickness

- Carrier injection from DMS:
 - Efficient, independent on barrier thickness L_b
 - Spin injection from DMS
 - Strong dependence on L_b

Origin?

Carrier injection: Mechanism

Possible mechanisms for carrier injection: Image: Image:

- Strong dependence on barrier thickness, ~ exp(-L_b)
- **Dipole-dipole interaction:**
 - Strong dependence on L_b, ~ L_b⁻⁴
- ☑ <u>Photon-exchange:</u>
 - Weak dependence on L_b
 - Consistent with experiment

Spin Injection: Time-resolved Polarized PL

PL transient:

Radiative and spin-flip times in QDs are independent of L_b

Rate Equation Analysis:

- ➢ Spin loss during energy transfer increases with L_b
- Spin scattering in the barrier ?
- Changes in interface quality with L_b?

Direct evidence for spin injection from Zn_{0.93}Mn_{0.07}Se DMS to CdSe QD's

- **Tunable laser excitation**
- Determination of the dominant mechanism for carrier injection during spin injection
 - **Energy transfer via photon exchange**
- Spin loss during spin injection
 - □ Strong dependence on barrier width
 - **Origin unknown so far**
 - □ Further experimental and theoretical studies required