#

Event Computing: Towards an
Adaptive System Diagnosis

Prof. Dr. Petre DINI

2009
Athens .

The Road Ahead
#

Positioning
Issues
- Event definition
- Event transport
- Event processing

- Business-driven events

AAAAAA L.

Positioning
#

» Layered event process architecture
- Issuing events
- Processing events

- ? Performance

 Information bus
- Publishing events
- Subscribing to events

- 7?7 Access/ transport

 Towards autonomic event processing

- Network smartness vs. network management

2009

Athens Petre DINI

Get the Infrastructure behavior
#

> Act (pre-emptive, proactive, P o

reactive,..) J
_ _ Fault/Alarm .
» Correlate (diagnostic,

troubleshooting, impact, root

cause, - .
) Notification \

» Get status (push/poll) ’ AT -

Performance/Security

All operations can be policy-driven
- top-down
- bottom-up

2009

Athens Petre DINI

Bottom-up vs. Top-down

> Event
| Information +
Device
l Information +
Domain Manager enriches Domain
with domain information | Information
EMS enriches with multi- I
device information ~_Second level ~ Event
- . ! Information +
Notification Engine collects Device
OS notifications _ -
First Level Information
I Event
Information

-

Athens Petre DINI S

2009

A Layered Processing View

networ k ? event
oper ator T advanced correlation

| filtering.
layer n

{ “* normalization
o /' + e

------------ %"""' simple correlation

layer 1

3 fllter|n§>

‘ normalization
device

parsing

event(s)
pzlling ? delivering

U

Log Files, Syslog, MIBs, RMON, etc.

2009
Athens Petre DINI

Multi-level diagnostic
#

t ¢

Di agn ostic advanced diagnostic & correlation
events: SIS
-From Any Diagnostic < filtering Level Il Diagnostic Functions
Engine inside NEs - normalization - within the NE,
- From a specialized by SA on top of NEs
SA Engines z
-From other OSS 4 - by SA and Remote Knowledge
components Events, Alarms, Faults DataBase
- _—— _— _— _— -
processing «_
:* normalization
: parsing
event(s)
F%“ingT delivering
Events
Log Files, Syslog, SNMP informs, Level | Diagnostic Functions
CLI commands, etc. (embedded within the NE)

GODS: Generic Online Diagnostic Subsystem
2009
Athens Petre DINI

Communication Bus

Business model SLA model
User model Policy model
Service model Mgmt model
Network model Event model

FRET ™t e

Common Messaging Infrastructure

» Secure Event Services
» Peer-to-peer communications

2009

Athens Petre DINI

Evolution of Network Manageability
#

Adaptive Networks

- Self-healing, self-tuning, self-mgmt

Industry - High Availability network services
IS here
Programmable Netwaorks -
- Single Programmatic Interface ™ .-
- Configuration of networks and services
- Policy-based network management: . "
Market

Requirement

Programmable Devices

- SNMP, XML and other interfaces
- Configuration of device parameters
- Automation of manual procedures

Operational Capability

Manual Devices i

- CLI operator interface
- Configuration of device parameters

Network Scale, Complexity, Availability

Evolution of Network Smartness

Adaptive Behavior

- Self-healing, self-tuning, self-mgmt

Industry - High Availability network services
IS here
= v -
— Predictive Behavior -
'c% - Monitoring 5 1 g
o - Resilient networks o
@®© - Symptoms, pre-emptive L
O Market b Sy
T Requirement -
ccn Reactive Behavior
% - Call Home
— - Decrease MTTR
()] . - -
o Not t@gjgg;thc'al
@ ! o

Connected Device

- Can be addressed <naming><location>
- Inventory

Network Scale, Complexity

10

Autonomic Computing

Human A_A Human

Management app.

Analyze

Network Element Network Element

(a) Typical management control loop (b) Closed management control loop
In autonomous network

2009
Athens Petre DINI 11

Challenging Issues
#

Too Many

2009

Syntax Issues

» Various formats
* Myriad of conversions needed

* Lack of syntax control

NE Manageability: EI BML
? data for mat Services

? conveying protocol @ D -VvPN L] SML
? required M1Bs - Vol P

? required agents _ -) @
? required inter faces Technologies % - BreadBa NM L
2 embedded functions :S/I?J?ticast cc , L/ EML
]
|P Address
P oA s PO ones RN

efc]

‘ interfaces § g agents ‘
- MIB MIB MIB [ec] NE [

Athens

Syslog Message “Body” Format in the 10S
#

*Sep 20 01:12:32: %SYS-5-CONFIG_I: Configured from

i~ ~ \ k- 1 o
e cunsele by vyl (144.254.5.79)
Timestamp IOS Component Severity Mnemonic Message-text

Sep 20 01:07:00 router.cisco.com 571::Sep 20 01:12:31:
%SYS-5-CONFIG_I: Configured from consoie oy viyl
(144.254.9.79)

* NTP is needed!
 Header:level can be different than Body:severity

2009

Athens 14

Petre DINI

Semantic Issues
#

* Naming

» Context-defined

* Smart events

NM Systems
CUSTOMERS

T

business fbjective

f

Intermediate
Processing
MIDDLEWARE

performarluce objective

4
Syslog e\1ents

Network Devices
VENDOR

2009
Athens

v

- How to instruct
intermediate processing
to filter special
instructions?

L [How? |

Syslog message

Petre DINI

- How to convey special
instructions to the
intermediate processing
components?

- How to consider vendor
instructions in setting

business objective?
15

XML Tagging is Not Enough

?
27
% versus <XML > Eg f_"’i‘gt'? (??)
: <<<a>><c>> <name><semantics>
(((a)(b)c))
?
1. <a> <c> Tag relationships
? ? ?
2. <<a>---rl-->--r2 -- <c>
? ?
?
Naming service
€.9., required
<a> -- Interface (? OID)

-- Port (? OID)

<c> -- Severit
y . Despite the problems caused by its use:

. — The messages don’t have a standardized definition
. — Priority is geared toward UNIX problems

. — Priority is not used consistently

. — Not reliable

. — Not secure

. some key features, (i) ease of use for developers, (ii) familiarity, and (iii) ubiquity makes it a
workable solution.

2009
Athens Petre DINI 16

Timestamps issues
#

* Format
* Clock-free event sources

« Sources-destination timestamps

Delay tolerant networks

Localizing processing
Local synchronization

Wide synchronization

Reliable timestamps

2009
Athens Petre DINI L

Adding Security to Event Transport
#

- Entity authentication

- Message Authentication
- Privacy

- Data integrity

- Sighatures

AAAAAA

Putting and End to Unreliability
#

* Reliable transport mechanism
« Partially reliable transport [weak link]

o ?
- event itself [seq numbers]-based

- window-based
- context-based

2009
Athens Petre DINI 19

Example: Syslog
#

[field1l] % [field2] % [severity | % [priority]%] mnemonic] %[free form field]

Well identified fields Issues
[timestamps] - Number of fields varies
[facility] - Value space of the fields is
[severity] Is not uniform/standardized
[priority] - Semantic of timestamps is not
[mnemonic] uniform/or not defined

- Mnemonic is not modeled
Free form field (the richest in semantic)
[..English plain text..] - The English text is only humanly
readable/useful
Field separator
% - Automation is difficult due to
the “natural language processing
needs

2009
Athens Petre DINI 2

Things started to get fixed
E—
- Syslog, SNMP/MIB: IETF
 Adaptive message format: IBM/Cisco
« Intrusion detection format: IETF
« Anomaly report format: OASIS
* Incident handling format: IETF

* NGN management : ITU-T [Focus group]

2009
Athens Petre DINI 21

Still to answer...
#

« Concepts such utility-based computing, autonomic
computing, diagnosis-in-the-box, diagnosis out-of-box,
adaptable applications, self-adaptable applications, and
reflexive environments require a new approach of formalizing
events, architecting event-based systems, and integrating
such systems.

« Additionally, GRID systems bring into the landscape the
concept of intermittent and partial behavior related to
resource sharing that may require a special semantic on
SLA/QoS violation events.

* Events related to traffic patterns and the dynamics of
performance and availability changes in such environments
requires particular metrics and processing, as well
[accounting, outage].

2009

Athens Petre DINI 22

On diagnosis
#

» Case study

2009
Athens Petre DINI Z

Background on systems diagnosis
#

* In the field of system and network diagnosis, there is a variety of
modeling and inference methods reported in literature.

 However, very few are focusing on the validation and knowledge
transfer in case of similar symptoms.

 Adaptive framework for diagnosis validation and transfer of
information from successful outcomes for future use and
optimization of the diagnostic activity.

* Itis shown that this mechanism allows a post-validation of
successful diagnosis actions, optimizing the diagnosis process
and increasing its accuracy.

2009
Athens Petre DINI 24

Diagnosis Theory —i-

' Q \ Sym}:*oms

VALIDATION Healing Probl b¥m5

T N

Preventing illness
Following small
variation from
range

After an illness
treatment

After a calm period

2009

Athens Petre DINI

-NORMAL
(accepted,
desired,
expected,
inrange)
lliness Data
-ABNORMAL
(not
recognized,
out of range,
denied by a
policy,
inconsistent,
out of context)

25

Diagnosis Theory —lii-
#

 We can identify two loops of the diaghosis process:

(a) one loop deals with measuring the system parameters (system state,
events, i.e., pre-conditions) and taking the most suitable actions; this
is referred to as the diagnosis loop

(b) a second loop deals with validating that the corrective actions were
indeed successful; this is referred to as the validation loop.

 The validation loop has two main goals:

(a) to establish the new state of the system, i.e., post-conditions and

(b) to gather knowledge on how to solve future similar situations, in
case the actions taken were considered successful.

* In general, there is little or no cross-interaction between these
two loops.

2009

Athens 26

Petre DINI

Approaches
#

« There are many modeling and inference methods of diagnosis, deriving from artificial
intelligence, graph theory, neural networks, information theory and automata theory.

« The most widely used diagnosis techniques are expert or knowledge-based systems
(rule-, model- and case-based systems, decision trees and neural networks).

* Rule-based techniques provide a powerful tool for eliminating the least likely
hypotheses in small systems

* Model traversing techniques use object-oriented representation of the system. They are
usually event-driven.

« Graph-theoretic technigues employ a Fault Propagation Model (FPM), which is a
graphical representation of all faults and symptoms occurring in the system and
commonly take the form of causality or dependency graphs.

« Some graph-theoretic technigues include divide and conquer algorithm, context-free
grammar, codebook technique, belief-network approach, and bipartite causality graphs.

e Open problems:

multi-layer fault diagnosis,
distributed diagnosis,
temporal correlation fault diagnosis in mobile ad hoc networks

root-cause analysis in a service-oriented environment.

2009
Athens Petre DINI 27

Situation-based Diagnosis System
#

e Basic Concepts:

Symptoms are external manifestations of failures (e.g., alarms)

Situation represents the symptoms and the failure state of the
system in consideration.

Problem represents the failure state of the system and possible
causes. This concept allows us to deal with events which
might not be directly observable.

Context represents a subset of states (including system
topology, dependencies, configuration, etc.), services and
their users, at a given time.

Quality of Diagnosis (QoD) into the validation loop. This concept
will drive more accurate decisions, based on past successful
actions applied to similar situations.

2009

Athens 28

Petre DINI

Basic Concepts Relationship
#

* We identify 3 system states:

Type X - states producing
observable symptoms that
indicate failures

Symptoms Situation

X System .
z Bictes Type Y - states producing non-

observable events of failure

Y

Type Z -behaviorally expected
Probable | o ohiem states that are not associated
SESes with failures

2009

Athens 29

Petre DINI

Approach on the Diaghosis Loop —I-
#

* The diagnosis process can be summarized by (E)S - P = D(A)

where S, P, D, E, and A are Symptoms, Problems, Diagnosis, Events, and
Actions

« 3 types of symptoms, based on the completeness of the information coming from
the system:

(1) Reactive - A set of events may reflect a set of problems that can be repaired by a
set of diagnosis actions. In particular, the set of events may be received is a
certain time window. In the case of reactive symptoms, most of the events occur
spontaneously, i.e., SNMP traps, informs [16].

(i) Time-agnostic diagnosis:
[e1, €, €;....e)] 2 {p;} > {d}

(i) Time-oriented diagnosis (temporal context)
(€1, €5, €5....e.]t; 2 {pi}t; 2 {di}t

where s, p;, d;, € and a;represent a given instance of a symptom, problem,
diagnhosis, event and action respectively.

2009

Athens 30

Petre DINI

Diagnosis Loop —li-

52; Proactive - A set o! events may Be missing just one extra event Ee!ore Eelng

able to infer a set of problems associated with the system. Depending on the
nature of the event still to come, a different set of problems can be inferred.

€1, €2, €3....€04] + [€] 2 {P}}
€1, €2, €3....€04] + [€7] 2 {P'i}

The nature of the expected event might lead to different classes of problems.

(3) Pre-emptive - When a symptom is not complete, a threshold might be set on an
expected set of events. This threshold depends on the type of events (Boolean,
Integer, etc.). When the expected events are crossing the threshold (1) will take
place.

[e1, €5, €5....6,4] + [threshold on {e;}] ={p},
where “threshold” is used in a general sense, e.g., belonging to a class of
events, occurring in a temporal vicinity (e) of e, or at least of delay of (d)
from e, ;.
 When the context is taken into consideration, the diagnosis process becomes:
(E)S = [P, C] = D(A) where C = set of possible contexts

2009

Athens Petre DINI 3

Approach on the Validation Loop

« QoD module is a dedicated
validation engine, which
‘_‘ interacts through three
r A specialized interfaces with the
Valdtio _’_.1 i system and the diagnosis loop

Embedded
agents

Loop
l /A * It receives diagnosis feedback

N l from specialized system agents

12 via the Interface 12 and asks for
additional information (i.e., for

<pre-conditions> audits) via the Interface 11
<action-id> _ _ ;
<post-conditions> * It communicates the diagnhosis

results to the Diaghosis Loop via
QoD deals with validation the Interface 13
(or evaluation) of post-

conditions.

2009

Athens Petre DINI 32

QoD Mechanism
#

« At the end of the audit process, QoD returns to the diagnosis loop the subset of successful
actions from all possible actions taken to repair a certain situation, in a certain context.

[S, C, {successful actions}} - Diagnosis Loop

« Definition of a successful action
if

{state} 2>{action} 2> {state} Note: An action can be successful in one context
where and failure in another context.
{state} e X 2
{statej} € Z
then

{action} is successful
 The format of the information returned to the diagnosis loop can have 2 forms:

(1) The successful action, composed of pre-conditions, id and post-conditions as well as the
symptom, problem and context.

[<pre-cond><id><post-cond> | <S,P,C>]

(2) The successful action, composed of pre-conditions, id and post-conditions as well as a
pointer. The pointer indicates the list of <S,P,C> in which the action in consideration was
successful.

[<pre-cond><id><post-cond> | <pointer>] where <pointer> = {...<S,P,C>;, <S,P,C>,...}

2009

Athens Petre DINI 33

Use case - The “memory leak” —I-

#

« A memory leak occurs when a process requests memory
blocks and does not release them when it has finished
using them. Eventually, the process uses up all of the
available memory. This is considered a bug.

« Memory leak detection is done by comparing different
values of the holding memory for each process from
different instances of the command show proc mem

 The symptoms are (i) device free memory decreases over

time, and (ii) process holding memory grows and it Is
never released.

2009

Athens Petre DINI 34

The “memory leak” —li-
#

The diagnosing steps:

« Step #1. Detection of processes with significant memory increase
Criteria:

Holding memory is increasing over time, with slope > 0.3
Holding memory is more than 10% of Total Holding Memory

- Step #2: For all “process_memory_increasing” symptoms, verify if a
memory leak for that process may be excluded.

Criterion:
Holding memory released over time, with slope <-0.3

- Step #3: All remaining “process_memory_increasing” symptoms point out a
memory leak.

This step simply contains the recommendations.

These recommendations are cross-checked by the QoD and then validated, upon
s successful fix of “memory leak” symptom.

Athens Petre DINI 33

The “memory leak” —lii-
#

Opal Active Assistance Report
For Problem "PPP Auth Memory Leak - Mo leak in IP-EIGRP - Frag" on 24-02-2003 13:59:59 UTC

Diagnosis and Recommendations

message and action (where applicable)

Memory Fragmentation in device eagle

The largest black of free rmerory available in eagle at time 4500 is only 2608 while the total amount of Free Marmory is 27275452 . This rmay
indicate a Mermory Fragrnentation issue, TRY THIS: Sarme features protocals wou are running ray require a large amount of Mmerary far a3 shart
period af time and that law mermory condition may lead to a fragrmientation, Make sure your router has enough Fmemary. Also, vyou fmay use the
Bug Toolkit ta look for Merory Fragrmentation bugs in the IO% release vou are currently running.

access-list 10 was reordered for best perfarmance
accass-list 10 deny 1.2,3.4 0,0,.0.0 count 28

access-list 10 deny 10,10,10,10 0,0,0,0 count 23
access-list 10 deny 10,10,10,0 0,0,0,255 count &
access-list 10 deny 2.2.2.2 0,0.0.0 caunt O

access-list 10 permit 11.11.11.11 0.0,0.0 count O
accass-list 10 deny 0.0.0.0 255.255.255.255 count 2336

Request the following information

command

data
device_rmermary_fragrnentation eagle 4500
accass-list-reordered 10

Commands used for this diagnosis

Petre DINI 36

The “memory leak” — iv-
#

Symptoms were detected and validated by the QoD module:
(MAIN::symptom (type process_memory leak) (data ppp-auth serafijn))

List of recommendations:

- (MAIN::diagnosis (message RETRACT <Fact-14> because ip-input released 6214512
by test of memory between 2000 and 3000) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device

[serafijn] Leak rate 6214.512 per second - Holding memory increased 6214512 |
12.562578788769063 % of total memory]) (action nil))

- (MAIN::diagnosis (message [MEMORY LEAK SYMPTOMS] A memory leak occurs
when a process requests or allocates memory and then forgets to free [de-allocate]
the memory, when it is finished with that task. As a result, the memory block is
reserved until the router is reloaded. Over time, more and more memory blocks are
allocated by that process until there is no free memory available. Depending on the
severity of the low memory situation at this point, the only option you may have is to
reload the device (e,g., a router) to get it operational again) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device [
serafijn] Leak rate 6756.384 per second - Holding memory increased 13512768
[26.788719475492133 % of total memory]) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device |
serafijn] Leak rate 7298.256 per second - Holding memory increased 7298256 |
26.788719475492133 % of total memory]) (action nil))

2009

Athens Petre DINI 34

ASs a conclusion
#

* Event computing:

It is complex

It is distributed

It is context-oriented

It is real time

It is hierarchical
Results need validation

It Is challenging

2009

Athens 38

Petre DINI

