
1

Petre DINI2009
Athens

Event Computing: Towards an
Adaptive System Diagnosis

Prof. Dr. Petre DINI

petre@iaria.org

222Petre DINI

2009
Athens

The Road Ahead

Positioning

Issues

- Event definition

- Event transport

- Event processing

- Business-driven events

333Petre DINI

2009
Athens

Positioning

• Layered event process architecture

- Issuing events

- Processing events

- ? Performance

• Information bus

- Publishing events

- Subscribing to events

- ? Access/ transport

• Towards autonomic event processing

- Network smartness vs. network management

444Petre DINI

2009
Athens

Get the infrastructure behavior

 Act (pre-emptive, proactive,
reactive,..)

 Correlate (diagnostic,
troubleshooting, impact, root
cause, …)

 Get status (push/poll) Information

Event

Notification

Fault/Alarm

Performance/Security

All operations can be policy-driven
- top-down
- bottom-up

555Petre DINI

2009
Athens

Third level
(Domain Manager)

Second level
(Element Manager)

Bottom-up vs. Top-down

 Domain Manager enriches
with domain information

 EMS enriches with multi-
device information

 Notification Engine collects
OS notifications

First Level
(Mgd Elemt)

Event
Information

Event
Information +

Device
Information +

Domain
Information

Event
Information +

Device
Information

?

666Petre DINI

2009
Athens

A Layered Processing View

layer 1

layer k

device

layer n

network

operator

normalization

filtering

advanced correlation

event

event(s)
delivering

normalization

filtering

simple correlation

event

parsing

polling

Log Files, Syslog, MIBs, RMON, etc.Log Files, Syslog, MIBs, RMON, etc.

777Petre DINI

2009
Athens

Multi-level diagnostic

normalization

filtering

advanced diagnostic & correlation

Level II Diagnostic Functions
- within the NE,
- by SA on top of NEs
- by SA and Remote Knowledge
DataBaseEvents, Alarms, Faults

event(s)
delivering

normalization

processing

parsing

polling

Log Files, Syslog, SNMP informs,Log Files, Syslog, SNMP informs,
CLI commands, etc.CLI commands, etc.

GODSGODS

GODS: Generic Online Diagnostic Subsystem

Level I Diagnostic Functions
(embedded within the NE)

Events

Diagnostic
events:

-From Any Diagnostic
Engine inside NEs
- From a specialized
SA Engines
-From other OSS
components

888Petre DINI

2009
Athens

Communication Bus

ConfigurationConfigurationSecuritySecurity

FaultFault SLASLA PerformancePerformance

AccountingAccounting

Distributed Network ServicesDistributed Network Services

Order EntryOrder Entry
SystemSystem

Order EntryOrder Entry
SystemSystem

CustomerCustomer
CareCare

CustomerCustomer
CareCare

BillingBillingBillingBilling Perf./SLAPerf./SLAPerf./SLAPerf./SLA

ProvisioningProvisioningProvisioningProvisioning
NetworkNetwork

ManagementManagement
NetworkNetwork

ManagementManagement
ElementElement

ManagementManagement
ElementElement

ManagementManagement

FaultFault
ManagementManagement

FaultFault
ManagementManagement

ProcessProcess
WorkflowWorkflow
ProcessProcess

WorkflowWorkflow

Common Messaging Infrastructure
• Secure Event Services
• Peer-to-peer communications

DiscoveryDiscovery

Distributed Network ServiceDistributed Network Service

POLICYPOLICYPOLICYPOLICY SLASLASLASLA SECURITYSECURITYSECURITYSECURITY

Policy

Business model

User model

Service model

Network model

SLA model

Policy model

Mgmt model

Event model

Inventory

999Petre DINI

2009
Athens

O
p

e
ra

ti
o

n
a

l
C

a
p

a
b

il
it

y

Network Scale, Complexity, Availability

Evolution of Network Manageability

Adaptive NetworksAdaptive Networks

Programmable NetworksProgrammable Networks

Programmable DevicesProgrammable Devices

Manual DevicesManual Devices

Market
Requirement

999.

-- CLI operator interfaceCLI operator interface
-- Configuration of device parametersConfiguration of device parameters

-- SNMP, XML and other interfacesSNMP, XML and other interfaces
-- Configuration of device parametersConfiguration of device parameters
-- Automation of manual proceduresAutomation of manual procedures

-- Single Programmatic InterfaceSingle Programmatic Interface
-- Configuration of networks and servicesConfiguration of networks and services
-- PolicyPolicy--based network managementbased network management

-- SelfSelf--healing, selfhealing, self--tuning, selftuning, self--mgmtmgmt
-- High Availability network servicesHigh Availability network servicesIndustryIndustry

is hereis here

101010Petre DINI

2009
Athens

O
p

e
ra

ti
o

n
a

l
C

a
p

a
b

il
it

y

Network Scale, Complexity

Evolution of Network Smartness

Adaptive BehaviorAdaptive Behavior

Predictive BehaviorPredictive Behavior

Reactive BehaviorReactive Behavior

Connected DevicesConnected Devices

Market
Requirement

101010

-- Can be addressed <naming><location>Can be addressed <naming><location>
-- InventoryInventory

-- Call HomeCall Home
-- Decrease MTTRDecrease MTTR
-- Not time criticalNot time critical

-- MonitoringMonitoring
-- Resilient networksResilient networks
-- Symptoms, preSymptoms, pre--emptiveemptive

-- SelfSelf--healing, selfhealing, self--tuning, selftuning, self--mgmtmgmt
-- High Availability network servicesHigh Availability network servicesIndustryIndustry

is hereis here

111111Petre DINI

2009
Athens

Autonomic Computing

Network Element

Management app.

Human

Network Element

Mgt
app

Human

Observe

Analyze

Plan

Adjust

(a) Typical management control loop (b) Closed management control loop
in autonomous network

Observe

Analyze

Plan

Adjust

Network Element

Management app.

Human

Network Element

Mgt
app

Human

Observe

Analyze

Plan

Adjust

Observe

Analyze

Plan

Adjust

(a) Typical management control loop (b) Closed management control loop
in autonomous network

Observe

Analyze

Plan

Adjust

Observe

Analyze

Plan

Adjust

121212Petre DINI

2009
Athens

Challenging Issues

Too Many

131313Petre DINI

2009
Athens

Syntax Issues

• Various formats

• Myriad of conversions needed

• Lack of syntax control

etc.MIBMIBMIB

etc.

interfaces agents

NE
SAA

EML

NML

SML

BMLServices
- VPN
- VoIP
- Metro_Ethernet
- BroadBand
Access

Technologies
- QoS
- Multicast
-…

NE Manageability:
? data format
? conveying protocol
? required MIBs
? required agents
? required interfaces
? embedded functions

F C A P S
IP Address

Mgmt
others PNL

141414Petre DINI

2009
Athens

Sep 20 01:07:00 router.cisco.com 571: Sep 20 01:12:31:
%SYS-5-CONFIG_I: Configured from console by vty1
(144.254.9.79)

* Sep 20 01:12:31: %SYS-5-CONFIG_I: Configured from
console by vty1 (144.254.9.79)

Syslog Message “Body” Format in the IOS

• NTP is needed!

M
e
s
s
a
g
e

t
e
x
t

CONSOLE

SERVER

Router

Timestamp from
the server

Timestamp from
the router

Timestamp IOS Component Severity Mnemonic Message-text

• Header:level can be different than Body:severity

151515Petre DINI

2009
Athens

Semantic Issues

• Naming

• Context-defined

• Smart events
NM Systems

CUSTOMERS

Network Devices
VENDOR

Intermediate
Processing

MIDDLEWARE

business objective

performance objective
Syslog events

HOW? Syslog message

- How to convey special
instructions to the
intermediate processing
components?

- How to consider vendor
instructions in setting
business objective?

- How to instruct
intermediate processing
to filter special
instructions?

161616Petre DINI

2009
Athens

XML Tagging is Not Enough

%% versusversus <XML><XML>
:: <<<a>><c>><<<a>><c>>
:: (((a)(b)c))(((a)(b)c))

1. <a>1. <a> <c><c>
? ? ?? ? ?

2. <<a>2. <<a> ------ r1r1 ---- >> ---- r2r2 ---- <c><c>
? ?? ?

e.g.,e.g.,
<a><a> ---- Interface (Interface (?? OID)OID)
 ---- PortPort ((?? OID)OID)
<c><c> ---- SeveritySeverity

??
Naming serviceNaming service
requiredrequired

??
Tag table (Tag table (????))
Tag List:Tag List:
<name><semantics><name><semantics>

??
Tag relationshipsTag relationships

• Despite the problems caused by its use:

• – The messages don’t have a standardized definition

• – Priority is geared toward UNIX problems

• – Priority is not used consistently

• – Not reliable

• – Not secure

• some key features, (i) ease of use for developers, (ii) familiarity, and (iii) ubiquity makes it a
workable solution.

171717Petre DINI

2009
Athens

Timestamps issues

• Format

• Clock-free event sources

• Sources-destination timestamps

• Delay tolerant networks

• Localizing processing

Local synchronization

Wide synchronization

• Reliable timestamps

181818Petre DINI

2009
Athens

Adding Security to Event Transport

- Entity authentication

- Message Authentication

- Privacy

- Data integrity

- Signatures

191919Petre DINI

2009
Athens

Putting and End to Unreliability

• Reliable transport mechanism

• Partially reliable transport [weak link]

• ?

- event itself [seq numbers]-based

- window-based

- context-based

202020Petre DINI

2009
Athens

Example: Syslog

[field1] % [field2] % [severity] % [priority]%[mnemonic] %[free form field]

Well identified fields
[timestamps]
[facility]
[severity]
[priority]
[mnemonic]

Free form field (the richest in semantic)
[..English plain text..]

Field separator
%

Issues
- Number of fields varies
- Value space of the fields is

is not uniform/standardized
- Semantic of timestamps is not

uniform/or not defined
- Mnemonic is not modeled

- The English text is only humanly
readable/useful

- Automation is difficult due to
the “natural language processing”
needs

212121Petre DINI

2009
Athens

Things started to get fixed

• Syslog, SNMP/MIB: IETF

• Adaptive message format: IBM/Cisco

• Intrusion detection format: IETF

• Anomaly report format: OASIS

• Incident handling format: IETF

• NGN management : ITU-T [Focus group]

222222Petre DINI

2009
Athens

Still to answer…

• Concepts such utility-based computing, autonomic
computing, diagnosis-in-the-box, diagnosis out-of-box,
adaptable applications, self-adaptable applications, and
reflexive environments require a new approach of formalizing
events, architecting event-based systems, and integrating
such systems.

• Additionally, GRID systems bring into the landscape the
concept of intermittent and partial behavior related to
resource sharing that may require a special semantic on
SLA/QoS violation events.

• Events related to traffic patterns and the dynamics of
performance and availability changes in such environments
requires particular metrics and processing, as well
[accounting, outage].

232323Petre DINI

2009
Athens

On diagnosis

• Case study

242424Petre DINI

2009
Athens

Background on systems diagnosis

• In the field of system and network diagnosis, there is a variety of
modeling and inference methods reported in literature.

• However, very few are focusing on the validation and knowledge
transfer in case of similar symptoms.

• Adaptive framework for diagnosis validation and transfer of
information from successful outcomes for future use and
optimization of the diagnostic activity.

• It is shown that this mechanism allows a post-validation of
successful diagnosis actions, optimizing the diagnosis process
and increasing its accuracy.

252525Petre DINI

2009
Athens

Diagnosis Theory –i-

262626Petre DINI

2009
Athens

Diagnosis Theory –ii-

• We can identify two loops of the diagnosis process:

(a) one loop deals with measuring the system parameters (system state,
events, i.e., pre-conditions) and taking the most suitable actions; this
is referred to as the diagnosis loop

(b) a second loop deals with validating that the corrective actions were
indeed successful; this is referred to as the validation loop.

• The validation loop has two main goals:

(a) to establish the new state of the system, i.e., post-conditions and

(b) to gather knowledge on how to solve future similar situations, in
case the actions taken were considered successful.

• In general, there is little or no cross-interaction between these
two loops.

272727Petre DINI

2009
Athens

• There are many modeling and inference methods of diagnosis, deriving from artificial
intelligence, graph theory, neural networks, information theory and automata theory.

• The most widely used diagnosis techniques are expert or knowledge-based systems
(rule-, model- and case-based systems, decision trees and neural networks).

• Rule-based techniques provide a powerful tool for eliminating the least likely
hypotheses in small systems

• Model traversing techniques use object-oriented representation of the system. They are
usually event-driven.

• Graph-theoretic techniques employ a Fault Propagation Model (FPM), which is a
graphical representation of all faults and symptoms occurring in the system and
commonly take the form of causality or dependency graphs.

• Some graph-theoretic techniques include divide and conquer algorithm, context-free
grammar, codebook technique, belief-network approach, and bipartite causality graphs.

• Open problems:

multi-layer fault diagnosis,

distributed diagnosis,

temporal correlation fault diagnosis in mobile ad hoc networks

root-cause analysis in a service-oriented environment.

Approaches

282828Petre DINI

2009
Athens

Situation-based Diagnosis System

• Basic Concepts:

Symptoms are external manifestations of failures (e.g., alarms)

Situation represents the symptoms and the failure state of the
system in consideration.

Problem represents the failure state of the system and possible
causes. This concept allows us to deal with events which
might not be directly observable.

Context represents a subset of states (including system
topology, dependencies, configuration, etc.), services and
their users, at a given time.

Quality of Diagnosis (QoD) into the validation loop. This concept
will drive more accurate decisions, based on past successful
actions applied to similar situations.

292929Petre DINI

2009
Athens

Basic Concepts Relationship

• We identify 3 system states:

Type X - states producing
observable symptoms that
indicate failures

Type Y - states producing non-
observable events of failure

Type Z -behaviorally expected
states that are not associated
with failures

303030Petre DINI

2009
Athens

Approach on the Diagnosis Loop –i-

• The diagnosis process can be summarized by (E)S P D(A)

where S, P, D, E, and A are Symptoms, Problems, Diagnosis, Events, and
Actions

• 3 types of symptoms, based on the completeness of the information coming from
the system:

(1) Reactive - A set of events may reflect a set of problems that can be repaired by a
set of diagnosis actions. In particular, the set of events may be received is a
certain time window. In the case of reactive symptoms, most of the events occur
spontaneously, i.e., SNMP traps, informs [16].

(i) Time-agnostic diagnosis:

[e1, e2, e3….en] {pi} {di}

(ii) Time-oriented diagnosis (temporal context)

[e1, e2, e3….en]t1  {pi}t1  {di}t1

where si, pi, di, ei and ai represent a given instance of a symptom, problem,
diagnosis, event and action respectively.

313131Petre DINI

2009
Athens

Diagnosis Loop –ii-

(2) Proactive - A set of events may be missing just one extra event before being
able to infer a set of problems associated with the system. Depending on the
nature of the event still to come, a different set of problems can be inferred.

[e1, e2, e3….en-1] + [en] {pi}

[e1, e2, e3….en-1] + [e’n] {p’i}

The nature of the expected event might lead to different classes of problems.

(3) Pre-emptive - When a symptom is not complete, a threshold might be set on an
expected set of events. This threshold depends on the type of events (Boolean,
Integer, etc.). When the expected events are crossing the threshold (1) will take
place.

[e1, e2, e3….en-1] + [threshold on {ei}]{pi},

where “threshold” is used in a general sense, e.g., belonging to a class of

events, occurring in a temporal vicinity (e) of en-1, or at least of delay of (d)

from en-1.

• When the context is taken into consideration, the diagnosis process becomes:

(E)S [P, C] D(A) where C = set of possible contexts

323232Petre DINI

2009
Athens

Approach on the Validation Loop

• QoD module is a dedicated
validation engine, which
interacts through three
specialized interfaces with the
system and the diagnosis loop

• It receives diagnosis feedback
from specialized system agents
via the Interface I2 and asks for
additional information (i.e., for
audits) via the Interface I1

• It communicates the diagnosis
results to the Diagnosis Loop via
the Interface I3

<pre-conditions>
<action-id>

<post-conditions>

QoD deals with validation
(or evaluation) of post-
conditions.

333333Petre DINI

2009
Athens

QoD Mechanism

• At the end of the audit process, QoD returns to the diagnosis loop the subset of successful
actions from all possible actions taken to repair a certain situation, in a certain context.

[S, C, {successful actions}} Diagnosis Loop

• Definition of a successful action

if

{statei} {actioni}  {statej} Note: An action can be successful in one context

where and failure in another context.

{statei} ∈ X ∧

{statej} ∈ Z

then

{actioni} is successful

• The format of the information returned to the diagnosis loop can have 2 forms:

(1) The successful action, composed of pre-conditions, id and post-conditions as well as the
symptom, problem and context.

[<pre-cond><id><post-cond> | <S,P,C>]

(2) The successful action, composed of pre-conditions, id and post-conditions as well as a
pointer. The pointer indicates the list of <S,P,C> in which the action in consideration was
successful.

[<pre-cond><id><post-cond> | <pointer>] where <pointer> = {…<S,P,C>i, <S,P,C>j…}

343434Petre DINI

2009
Athens

Use case - The “memory leak” –i-

• A memory leak occurs when a process requests memory
blocks and does not release them when it has finished
using them. Eventually, the process uses up all of the
available memory. This is considered a bug.

• Memory leak detection is done by comparing different
values of the holding memory for each process from
different instances of the command show proc mem

• The symptoms are (i) device free memory decreases over
time, and (ii) process holding memory grows and it is
never released.

353535Petre DINI

2009
Athens

The “memory leak” –ii-

The diagnosing steps:

• Step #1: Detection of processes with significant memory increase

Criteria:

Holding memory is increasing over time, with slope > 0.3

Holding memory is more than 10% of Total Holding Memory

• Step #2: For all “process_memory_increasing” symptoms, verify if a
memory leak for that process may be excluded.

Criterion:

Holding memory released over time, with slope < - 0.3

• Step #3: All remaining “process_memory_increasing” symptoms point out a
memory leak.

This step simply contains the recommendations.

These recommendations are cross-checked by the QoD and then validated, upon
successful fix of “memory leak” symptom.

363636Petre DINI

2009
Athens

The “memory leak” –iii-

373737Petre DINI

2009
Athens

The “memory leak” – iv-

Symptoms were detected and validated by the QoD module:

(MAIN::symptom (type process_memory_leak) (data ppp-auth serafijn))

List of recommendations:

- (MAIN::diagnosis (message RETRACT <Fact-14> because ip-input released 6214512
by test of memory between 2000 and 3000) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device
[serafijn] Leak rate 6214.512 per second - Holding memory increased 6214512 [
12.562578788769063 % of total memory]) (action nil))

- (MAIN::diagnosis (message [MEMORY LEAK SYMPTOMS] A memory leak occurs
when a process requests or allocates memory and then forgets to free [de-allocate]
the memory, when it is finished with that task. As a result, the memory block is
reserved until the router is reloaded. Over time, more and more memory blocks are
allocated by that process until there is no free memory available. Depending on the
severity of the low memory situation at this point, the only option you may have is to
reload the device (e,g., a router) to get it operational again) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device [
serafijn] Leak rate 6756.384 per second - Holding memory increased 13512768
[26.788719475492133 % of total memory]) (action nil))

- (MAIN::diagnosis (message [Process Memory Leak] Process [ppp-auth] in device [
serafijn] Leak rate 7298.256 per second - Holding memory increased 7298256 [
26.788719475492133 % of total memory]) (action nil))

383838Petre DINI

2009
Athens

As a conclusion

• Event computing:

It is complex

It is distributed

It is context-oriented

It is real time

It is hierarchical

Results need validation

It is challenging

